
Vocera Administration Interface Guide
Version 5.2.3

ii VOCERA ADMINISTRATION INTERFACE GUIDE

Notice

Copyright © 2002-2019 Vocera Communications, Inc. All rights reserved.

Vocera® is a registered trademark of Vocera Communications, Inc.

This software is licensed, not sold, by Vocera Communications, Inc. (“Vocera”). The reference text of the license governing this software can be
found at http://www.vocera.com/legal/. The version legally binding on you (which includes limitations of warranty, limitations of remedy and
liability, and other provisions) is as agreed between Vocera and the reseller from whom your system was acquired and is available from that
reseller.

Certain portions of Vocera’s product are derived from software licensed by the third parties as described at http://www.vocera.com/legal/.

Microsoft®, Windows®, Windows Server®, Internet Explorer®, Excel®, and Active Directory® are registered trademarks of Microsoft Corporation in
the United States and other countries.

Java® is a registered trademark of Oracle Corporation and/or its affiliates.

All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owner/s. All other
brands and/or product names are the trademarks (or registered trademarks) and property of their respective owner/s.

Vocera Communications, Inc.
www.vocera.com
tel :: +1 408 882 5100
fax :: +1 408 882 5101

Last modified: 2019-06-19 11:27

Docs_VS_523Rel build 177

http://www.vocera.com/legal/
http://www.vocera.com/legal/

iii VOCERA ADMINISTRATION INTERFACE GUIDE

Contents

Overview...5

VAI Features...5

VAI Limitations... 5

About VAI Documentation..5

System Requirements.. 6

How to Upgrade an Existing VAI Application... 6

Getting Started With VAI..6

VAI Class Hierarchy...7

Developing VAI Applications..7

Using the Sample Applications..8

Avoiding Version Mismatch Problems... 8

VAI Example..8

Working With Entities.. 10

Entity Operations..10

Creating Entities.. 10

Querying Entities... 11

Updating Entities... 11

Deleting Entities...12

Using Internal Names...13

Working with Addresses.. 14

Working with Buddies and Contacts..15

Working with Devices...17

Creating a Device..17

Updating a Device...17

Getting Devices... 18

Getting the Color or Type of a Device.. 18

Modifying Device Status Choices.. 19

Uploading Badge Logs... 19

Working with Groups... 20

Getting Subgroups.. 21

Managing Group Membership...21

Managing Group Permissions... 23

Working with Locations..24

Working with Sites... 25

Working with Users..27

Identifying Users..27

Users and Group Membership..27

Badge Users and Badge Status... 28

iv VOCERA ADMINISTRATION INTERFACE GUIDE

Importing User Data..29

Sending a Text Message.. 31

Working With Properties...33

Using Keyed Property Sets..33

Using Indexed Property Sets... 35

Persisting Application Data.. 36

Managing the Vocera Server...38

Connecting to the Vocera Server...38

Using the VAI.open() Method.. 38

Result Codes for the open() Method... 40

Getting Vocera Server Properties...40

Setting Vocera Server Properties... 41

Controlling the Vocera Server.. 41

Managing the Vocera Database...42

Monitoring the Vocera Server.. 43

Vocera Server States.. 45

Error Handling.. 46

Using the VAIException Class..46

Security Features.. 48

Controlling Access... 48

Using the mc.bat Utility...49

VAI and Tiered Administrators...50

Encrypted Passwords.. 50

Authorizing VAI Applications...51

Best Practices for Multiuser Applications... 51

Property Reference.. 53

Address Properties...53

Contact Properties... 54

Device Properties... 55

Group Properties..55

Location Properties.. 65

Site Properties... 66

User Properties.. 73

System Properties..79

5 VOCERA ADMINISTRATION INTERFACE GUIDE

Overview

The Vocera Administration Interface (VAI) is a Java API that enables you to control and administer
the Vocera system programmatically. Using VAI, you can perform almost all the Administration
Console and User Console functions described in the Vocera Administration Guide and the
Vocera User Console Guide. Familiarize yourself with the Administration Console and the User
Console—structure, function, and features—before you start programming with VAI.

VAI Features
Applications built using VAI can run on any machine (including non-Windows platforms) that has
network connectivity to the Vocera server. While VAI does not build in GUI capability, it supports
efficient data retrieval in the service of GUI applications, and includes search methods and status
callbacks that facilitate the development of such applications.

Here are some of the things you can do with VAI:

• Administer the Vocera system

• Query and update system settings

• Create, edit, delete, and query Vocera entities (users, groups, etc.)

• Start and stop the Vocera Server

• Backup, restore, and empty the Vocera database

• Integrate Vocera with enterprise applications. For example, you could update Vocera groups
dynamically using data from a scheduling application.

• Integrate Vocera with backend databases. For example, you could populate the Vocera
database from your HR database.

• Create a customized Administration Console. For example, you could enable access to
selected features based on user roles.

VAI Limitations
The initial release of VAI has some limitations compared to the console applications. VAI cannot:

• Load data from a CSV file.

• Operate the Data Checker.

However, in both cases, you can obtain the same effect in your VAI application by writing your
own code to perform that functionality.

About VAI Documentation
The Vocera Administration Interface Guide (this guide) explains how to develop applications using
VAI. It describes key VAI features and explains how to perform common programming tasks.

Also, an HTML-based Javadoc reference to the VAI classes are in the \VAI\docs\javadocs
directory of the Vocera Developer Kit CD.

OVERVIEW

6 VOCERA ADMINISTRATION INTERFACE GUIDE

VAI documentation uses a simplified version of Hungarian notation to indicate variable types in
parameter declarations. For example, the prefix "i" indicates an integer (as in iResultCode), the
prefix "s" indicates a String (as in sUserName), and the prefix "kps" indicates a KeyedPropertySet
(as in kpsUser).

Also, when myVai appears in the text or a code example, it refers to an instance of the VAI class
created to represent a connection to a Vocera server. See VAI Example for an example.

System Requirements
The following table lists the minimum hardware and software requirements for developing
applications using VAI.

Table 1: VAI system requirements

Component Requirement

Vocera libraries The following libraries from the \vocera\server\lib directory on the Vocera
Voice Server must be available and in the classpath of your development
environment:

• commons-configuration-1.10.jar
• commons-io-2.4.jar
• commons-lang-2.6.jar
• crypto-1.1.2.jar
• server.jar
• slf4j-api-1.7.7.jar

The classes that implement VAI are stored in server.jar. The other libraries
support related functions, such as encryption and decryption tasks.

Java Compiler JDK 8.0 (1.8)

Java Virtual Machine JRE 8.0 (1.8)

(Optional) IDE Any IDE or editor that can produce text files suitable for the Java compiler.

Hardware RAM, CPU, and free disk space required by the Java compiler and IDE.

How to Upgrade an Existing VAI Application

To upgrade existing VAI applications:

1. Copy the required Vocera libraries files from the \vocera\server\lib directory of the
Vocera Voice Server into your development directory.

See System Requirements on page 6 for the complete list of libraries.

2. Optionally, rebuild your application.

The Vocera 5.2 server.jar file is compiled using Java 8.0 (1.8). However, most VAI applications
built with Java 5.0 compilers should run fine in JRE 8.0. Generally, you should not need to
rebuild your application unless it uses methods that have changed in the latest version of
server.jar or is in some way incompatible with JRE 8.0.

3. Test your application.

A VAI-enabled license key must be installed on the Vocera server.

4. Deploy your application.

If your application uses a certificate file for security, remember to deploy the certificate file with
the application.

Getting Started With VAI
This section describes how you can get started developing applications with VAI.

OVERVIEW

7 VOCERA ADMINISTRATION INTERFACE GUIDE

VAI Class Hierarchy
In general, VAI class names correspond to data displayed in the Administration Console or the
User Console. For example, the Location class encapsulates the data displayed in the Locations
screen in the Administration Console. There are a few exceptions:

• The Address class and the AddressSet class correspond to Address Book page in the
Administration Console.

• The Contact class and the ContactSet class correspond to Buddies (more specifically, to
outside buddies) managed via the User Console.

• The Site class encapsulates data from the Telephony screen and the Sites screen of the
Administration Console.

The following list shows the VAI class hierarchy.

• class java.lang.Object
• class vai.BadgeStatus
• class vai.Entity

• class vai.Address
• class vai.Contact
• class vai.Device
• class vai.Group
• class vai.Location
• class vai.Site
• class vai.User

• class vai.EntitySet
• class vai.AddressSet
• class vai.ContactSet
• class vai.DeviceSet
• class vai.GroupSet
• class vai.LocationSet
• class vai.SiteSet
• class vai.UserSet

• class vai.LicenseInfo
• class vai.PropertySet

• class vai.IndexedPropertySet
• class vai.KeyedPropertySet

• class java.lang.Throwable (implements java.io.Serializable)

• class java.lang.Exception
• class vai.VAIException

• class vai.VAI

Developing VAI Applications
This section outlines the basic steps in developing an application using VAI.

How to Develop a VAI application:

To develop a VAI application:

1. Copy the required Vocera libraries files from the \vocera\server\lib directory of the
Vocera Voice Server into your development directory.

See System Requirements on page 6 for the complete list of libraries.

2. Optionally copy the following files from the \VAI\docs directory of the Vocera Developer Kit
CD into your development directory:

OVERVIEW

8 VOCERA ADMINISTRATION INTERFACE GUIDE

• VAIDevGuide.pdf, an electronic version of the Vocera Administration Interface Guide
(this document)

• The Javadocs folder, an HTML-based reference to the VAI classes.

3. Write the code to implement your client application.

You must have a Java compiler compatible with JDK 8.0 (1.8). You can write and edit code
using any IDE or editor that can produce text files suitable for the Java compiler.

At run time, your application's classpath must include the libraries listed in System
Requirements on page 6.

4. Deploy your application.

After you develop a VAI application, you’ll need to package its files so that you or other users
can install it. Many development environments include tools for packaging and deploying
applications.

If your application uses a certificate file for security, remember to deploy the certificate file with
the application.

Using the Sample Applications
On the Vocera Developer Kit CD, Vocera provides sample VAI applications in the \VAI
\samples directory. Each sample has its own Readme.txt file that describes how to build and
run the application, as well as any other configuration information.

Before building and running a VAI sample application, make sure you copy the required Vocera
libraries files from the \vocera\server\lib directory of the Vocera Voice Server into your
development directory.

Note: VAI sample applications are sample software provided solely to illustrate the use of
the API. Vocera provides the samples AS IS. You are solely responsible for verifying their
suitability for any specific purpose or application.

Avoiding Version Mismatch Problems
When you deploy your VAI application, always make sure that the Vocera Server you are
connecting to is at the same version or later of the server.jar file that you are using in your
application. Otherwise, your application may encounter a server mismatch error and fail to
connect to the server. If this happens, copy the server.jar from the %vocera_drive%\vocera
\server\lib directory on the Vocera Server into your application's \lib folder. Generally, you
should not need to revise or rebuild your application unless it uses methods that have changed
since the version of server.jar on the Vocera Server.

VAI Example
Here's a simple code example that retrieves data from a Vocera server. A discussion of the code
follows the listing.

VAI program example

import vai.*;
public class VAIDemo {
 public static VAI myVAI = new VAI();
 public static void main(String[] args) {

 try {
 myVAI.open("192.168.1.1", "Administrator", "admin",
 null);
 KeyedPropertySet kps = myVAI.getSystemProperties();
 System.out.println(kps.toString());
 myVAI.close();
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
 }

OVERVIEW

9 VOCERA ADMINISTRATION INTERFACE GUIDE

}

The example instantiates a VAI object to represent a connection to a Vocera server. Throughout
this documentation, when myVai appears in the text or a code example, it refers to an instance of
the VAI class.

The VAI.open() method opens a connection to the Vocera Server. The method specifies
the IP address(es) of the Vocera server computer(s), an administrator's user name, and the
corresponding password. For simplicity, this example hard-codes the login credentials. When
security is a concern, an application should prompt for login credentials at the beginning of each
VAI session.

The example retrieves Vocera system properties into a KeyedPropertySet object, which
manages property data as a list of key-value pairs, where each key is a string, and each value is
either a string or another property set.

After printing the properties, the program closes the VAI connection to the Vocera Server
and releases associated resources. As a best practice, call the close() method to close VAI
connections explicitly.

The following listing shows a portion of the output generated by the sample program
(actual values will vary depending on specific Vocera system settings). This listing is a string
representation of a VAI KeyedPropertySet instance, which encapsulates a collection of key-
value pairs. A key is either a string (such as Product Major Version) or another property set
(indicated by the keyword Set and delimited by square brackets).

Set
[
 Product Major Version = 4
 Product Minor Version = 0
 Product Revision = 0
 Time Last Update = 1143050438804
 Self Register = false
 ...
 Locale = US
 Mail Info = Set
 [
 Server Type = pop3
 Host =
 User Name =
 Encrypted Password =
 SMTP Host =
 SMTP User Name =
 Encrypted SMTP Password =
 SMTP Authentication = true
 Mail Check Interval = 30000
 Default Recipient =
 Domain Name =
]
 ...
]

Figure 1: String representation of a KeyedPropertySet

10 VOCERA ADMINISTRATION INTERFACE GUIDE

Working With Entities

The section describes how to work with VAI entities. A VAI entity provides object-oriented access
to data on the Vocera server. VAI implements classes you can use to work with entities (such
as users and groups), one at a time or in sets. For example, in the following code fragment a
UserSet object stores a list of all users on the Vocera system. A User object represents the first
user in that list, and enables a call to the getUserID() method implemented by the User class.

UserSet and User example

UserSet uSet = User.getUsers(myVai);
if (uSet.size() > 0) {
 User u = uSet.elementAt(0);
 String sUserID = u.getUserID();
 System.out.println(sUserID);
}

User.getUsers() is a static method. It returns a set that lists the users in the Vocera database.
The myVai parameter represents an instance of the VAI class initialized elsewhere. The example
gets the set of Vocera users, retrieves the first user in the set, gets the user ID, and then prints
the user ID.

Entity Operations
This section describes operations you can perform on VAI entities.

Creating Entities
Every class that extends Entity provides a create() method that has the following signature:

create(VAI vai, KeyedPropertySet ps)

The create() method for each class returns an instance of that class. The vai parameter
represents a connection to the Vocera server (typically instantiated by your application class),
and the ps parameter stores the key-value pairs that define properties for the class instance you
are creating. Note that for each entity type there are some required properties. For example,
the property set required to create a user is different from the property set required to create a
location, as shown in the following code listing.

Property sets used to create users and locations

try {
 KeyedPropertySet kpsUser = new KeyedPropertySet(myVai);
 kpsUser.putString("User ID", "jruth");
 kpsUser.putString("First Name", "Jorge");
 kpsUser.putString("Last Name", "Ruth");
 kpsUser.putString("Password", "sultan");
 User u = User.create(myVai, kpsUser);

 KeyedPropertySet kpsLoc = new KeyedPropertySet(myVai);
 kpsLoc.putString("Name", "Cafeteria A");

WORKING WITH ENTITIES

11 VOCERA ADMINISTRATION INTERFACE GUIDE

 Location loc = Location.create(myVai, kpsLoc);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

This code assumes that myVai is a VAI object that has been instantiated and used to open a
connection to a Vocera Server. Each entity class is defined by a specific set of required, optional,
and default properties. The properties required to create a location are different from those
required to create a user.

Querying Entities
Each entity class implements methods for querying property values specific to that class. Many
entity classes also provide static methods that return data about the collection of those class
instances as they exist in a Vocera database. For example, the following code gets information
about the users in a group.

Querying an entity

public void printGroupInfo() {
 try {
 Group gGroup = Group.getGroupWithName(myVai,
 "Doctors",
 "Cupertino");
 EntitySet esMembers = gGroup.getMembers(false);
 Entity e = null;
 String sCurrName = "";
 for (int i = 0; i < esMembers.size(); i++) {
 e = esMembers.entityAt(i);
 switch (e.getType()) {
 case Entity.tyGroup:
 Group g = (Group) e;
 sCurrName = "[Group] " + g.getName();
 break;
 case Entity.tyUser:
 User u = (User) e;
 sCurrName = "[User] " + u.getFirstName() +
 " " + u.getLastName();
 break;
 default:
 sCurrName = "No name";
 break;
 }
 System.out.println(sCurrName);
 }
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

The getGroupWithName() method returns a group with a specified name and site. The
getMembers(false) method call specifies that both direct members and indirect members
(that is, users who belong to nested groups) are returned. The example prints the names of the
members, whether they are groups or users.

Updating Entities
In contrast to APIs that provide accessor methods in pairs (such as getName() and setName()),
in VAI you update entities by setting values in property sets. Classes that extend Entity inherit
the update() method. The following code updates the description of a location with the string
"NICU Nurse Station".

Updating the description of a location

WORKING WITH ENTITIES

12 VOCERA ADMINISTRATION INTERFACE GUIDE

try {
 KeyedPropertySet kps = new KeyedPropertySet(myVai);
 kps.putString("Description", "NICU Nurse Station");
 Location loc =
 Location.getLocationWithName(myVai,
 "NICU Nurses"
 "Cupertino");
 loc.update(myVai, kps);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Use a KeyedPropertySet object to store the key-value pairs that you want to update. When you
update an entity, the set should contain only the properties that you want to update. For example,
when you need to change a user's last name, create and submit a property set that contains
only one key-value pair: the key "Last Name" and the new value for the user's last name. If any
property values contained in the KeyedPropertySet are invalid, the update() method fails and
throws an exception.

Do not fetch a set of all the user's properties, enter a new last name, and then submit the entire
set. You might overwrite changes made by someone else, either through a console or another
VAI instance, that were made between your fetch and your post.

For more information about using property sets to update entities, see Working With Properties.

Deleting Entities
The Entity class provides a delete() method you can use to delete any entity from the Vocera
database. For example, the following code deletes a user.

Deleting a user

try {
 User u = User.getUserWithUserID(myVai, "visitor04");
 u.delete();
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

The Entity.delete() method deletes all data pertaining to an entity from the Vocera system.
However, the deletion does not occur immediately. To ensure that no call activity is interrupted,
the deletion takes effect when the system has no calls or Genie sessions in progress or after the
server is restarted.

In contrast, the following code removes a user from a group, but that user's data remains in the
Vocera database.

Removing members from a group

try {
 User u = User.getUserWithUserID(myVai,
 "visitor04");
 Group g = Group.getGroupWithName(myVai,
 "Visitors",
 "Headquarters");
 g.removeMember(u);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

WORKING WITH ENTITIES

13 VOCERA ADMINISTRATION INTERFACE GUIDE

Using Internal Names
Vocera entities do not necessarily have unique names. For example, there may exist several
users or address book entries with the same first and last names, even within the same site.
Moreover, such "external" names may change as a result of Administration Console edits or VAI
calls. For this reason, each entity has a unique identifier, called an internal name, that is created
automatically by the Vocera server when the entity is created. This internal name is invariant over
the lifetime of the entity, and may therefore be used externally, such as in databases, to designate
the entity.

Note: You should not expect users of your VAI client to know anything about Vocera
internal names. Therefore, you should avoid using internal names in your client's UI.

The following code example shows how the Vocera system creates and uses internal names for
users who have the same first and last names.

Getting internal names for entities

try {
 KeyedPropertySet kps1 = new KeyedPropertySet(myVai);
 kps1.putString("First Name", "Ted");
 kps1.putString("Last Name", "Doe");
 kps1.putString("User ID", "teddoe1");

 User u1 = User.create(myVai, kps1);
 System.out.println("Internal name for teddoe1: " +
 u1.getInternalName());
 KeyedPropertySet kps2 = new KeyedPropertySet(myVai);
 kps2.putString("First Name", "Ted");
 kps2.putString("Last Name", "Doe");
 kps2.putString("User ID", "teddoe2");

 User u2 = User.create(myVai, kps2);
 System.out.println("Internal name for teddoe2: " +
 u2.getInternalName());

 UserSet uSet = User.getUsers(myVai);
 int i = uSet.findFirstMatch("Doe,Ted");
 System.out.println("First match: " +
 uSet.entityAt(i).getInternalName());

 i = uSet.findLastMatch("Doe,Ted");
 System.out.println("Last match: " +
 uSet.entityAt(i).getInternalName());
 u1.delete();
 u2.delete();
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

The findFirstMatch() and findLastMatch() methods used in the example are also useful for
implementing a find-as-you-type feature in a user interface.

The example code prints the following output.

Internal name for teddoe1: u-tdoe
Internal name for teddoe2: u-tdoe0
First match: u-tdoe0
Last match: u-tdoe

WORKING WITH ENTITIES

14 VOCERA ADMINISTRATION INTERFACE GUIDE

Working with Addresses
Use the Address class to work with Address Book entries. The Vocera address book is a
convenient way for badge users to contact places and people who are not badge users. For
example, if people in your organization frequently need to contact local businesses, you can enter
the business names and nicknames in the address book. Then, getting a price quotation from
Northwestern Hardware can be as simple as using the badge to say "Call Northwestern."

Addresses are identified by names: one name for a place (for example, "Northwestern"), two
names for a person (first and last, for example, "Jane Doe"). Therefore, in addition to the
methods for standard entity operations, the Address class provides methods for determining
the type (isPlaceName()), and for working with names (getPlaceName(), getFirstName(),
getLastName()). Also, the methods getAddressWithName() and getAddressesWithName()
are overloaded to return an Address or an AddressSet object, respectively, given various
combinations of place names, first and last names, and site names.

The following code example returns a string describing the Address objects defined for a
specified site (or for all sites, if a site is not specified).

Getting addresses for a site

public String getAddressNames(String sSite) {
 String sCurrSite = "";
 String sResult = "";
 String sCurrLastName = "No last name";
 String sCurrFirstName = "No first name";
 try {
 AddressSet asSet = Address.getAddresses(myVai, sSite);
 if (asSet.size() > 0) {
 for (int i = 0; i < asSet.size(); i++) {
 Address addr = asSet.elementAt(i);
 sCurrSite =
 (sSite.equals("") || sSite == null)
 ? addr.getSiteName() : sSite;
 if (addr.isPlaceName()) {
 sCurrLastName = addr.getPlaceName();
 sResult = sResult + "\n" +
 "[Type] Place " + "\t" +
 "[Name] " + sCurrLastName + "\t" +
 "[Site] " + sCurrSite;
 } else {
 sCurrFirstName = addr.getFirstName();
 sCurrLastName = addr.getLastName();
 sResult = sResult + "\n" +
 "[Type] Person " +"\t" +
 "[Last Name] " + sCurrLastName +"\t" +
 "[First Name] " + sCurrFirstName +"\t" +
 "[Site] " + sCurrSite;
 }
 }
 } else {
 sResult = "There are no Addresses in the database.";
 }
 } catch (VAIException ve) {
 sResult = ve.getMessage();
 }
 return sResult;
}

The isPlaceName() method finds out whether the Address object represents a person
or a place. Internally, place names are stored in the Last Name field, with First Name field
empty. When the Address object represents a person, you can call getLastName() and
getFirstName(). When the Address object represents a place, call getPlaceName() instead.
You could also query the Address's property set for the values of the First Name and Last Name
properties.

WORKING WITH ENTITIES

15 VOCERA ADMINISTRATION INTERFACE GUIDE

Working with Buddies and Contacts
A Vocera buddy is similar to an address book entry, in that it stores contact information.
However, an address book entry represents a person or place outside of the Vocera system,
while a buddy can be a badge user, a Vocera group, a Vocera address book entry, or a person
or place outside the Vocera system. Also, address book entries are defined for entire sites (or the
Global site), while buddies are defined for individual badge users. Buddies enable the use of nick
names in prompts and voice commands (for example, "Call the Big Kahuna").

There are two types of buddies: inside buddies and outside buddies.

• An inside buddy represents another badge user, a group, or an address book entry. Badge
users can contact inside buddies the same way they contact anyone with a badge. You can
assign each buddy a special ring tone that plays when the badge user receives a call from
that buddy. Also, inside buddies can be given VIP (very important person) status, enabling
them to contact a badge user even when that badge user is blocking calls or is in Do Not
Disturb mode.

• An outside buddy is someone who is not already represented in the Vocera database as a
badge user, group, or address book entry. A badge user can contact an outside buddy by
calling a telephone from a badge, or by sending an email message from a badge to an email
account.

Vocera users can create and manage buddy lists as described in the Vocera User Console Guide.
In VAI, you use the following classes to administer buddies programmatically:

• The Contact class represents an outside buddy as a VAI entity. Use the Contact class
to create and delete outside buddies, specifying basic contact information (such as name,
phone number) in a KeyedPropertySet.

Unlike some other entity classes, the Contact class has some properties that VAI cannot
update. To get a complete list of all Contact properties (read/write and read-only), call
getPropertyKeys(). To get a list of read/write properties (for example, to display in a UI for
editing), call getPropertyKeysForUpdate().

• The User class provides a means for updating a user's buddy list. Each User object has a
Buddies, an indexed set in which each element is itself a keyed set that contains a Contact
object or a User object along with properties including nick name and VIP status.

The following code example creates an outside buddy (contact) and adds it to an existing badge
user's buddy list.

Adding a contact

public static int addContact() {
 int iResultCode = -1;
 try {
 // Find the existing user.
 User u = User.getUserWithUserID(myVai, "rhall");

 // Properties for a new Contact.
 // A Contact represents an outside buddy.
 KeyedPropertySet kpsNewContact =
 new KeyedPropertySet(myVai);
 kpsNewContact.putString("Last Name", "Davis");
 kpsNewContact.putString("First Name", "Mills");
 kpsNewContact.putString("Desk Phone", "408-555-1234");
 kpsNewContact.putUser("Owner", u);

 Contact cNewContact =
 Contact.create(myVai, kpsNewContact);

 // Properties (including the new Contact) for a new
 Buddy.
 KeyedPropertySet kpsNewBuddy =
 new KeyedPropertySet(myVai);

WORKING WITH ENTITIES

16 VOCERA ADMINISTRATION INTERFACE GUIDE

 kpsNewBuddy.putContact("Name", cNewContact);
 kpsNewBuddy.putString("Nick Name", "New outside
 buddy");

 // Add the new Buddy to the user's existing set.
 KeyedPropertySet kpsUser = u.getProperties();
 IndexedPropertySet ipsBuddies =
 kpsUser.getIndexedSet("Buddies");
 ipsBuddies.add(kpsNewBuddy);

 // Update the user with new property set.
 KeyedPropertySet kpsUpdate =
 new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Buddies", ipsBuddies);

 u.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }

The following code example adds an existing badge user to another badge user's buddy list.

Adding an inside buddy

public static int addInsideBuddy() {
 int iResultCode = -1;
 try {
 // Search for inside buddy.
 User uBuddy = User.getUserWithUserID(myVai, "mdavis");

 // Properties for a new Inside Buddy.
 KeyedPropertySet kpsNewBuddy =
 new KeyedPropertySet(myVai);
 kpsNewBuddy.putUser("Name", uBuddy);
 kpsNewBuddy.putString("Nick Name", "New inside buddy");

 // Search for owner.
 User uOwner = User.getUserWithUserID(myVai, "rhall");

 // Add the new Buddy to the user's existing set.
 KeyedPropertySet kpsUser = uOwner.getProperties();
 IndexedPropertySet ipsBuddies =
 kpsUser.getIndexedSet("Buddies");
 ipsBuddies.add(kpsNewBuddy);

 // Update the user with new property set.
 KeyedPropertySet kpsUpdate =
 new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Buddies", ipsBuddies);

 uOwner.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

WORKING WITH ENTITIES

17 VOCERA ADMINISTRATION INTERFACE GUIDE

Working with Devices
Use the Device class to work with Vocera devices, such as badges. You can manage and track
the devices that connect to the Vocera system.

Creating a Device
To create a device, use the Devices.create() method. The only required property for devices
is the MAC Address property, a 12-character string.

Note: Vocera automatically adds new devices to the system when they connect to the
server, so you rarely will need to create a device using VAI. Instead, use VAI to update
device information.

Creating a device

public static void createNewDevice(String sMACAddr){
 try {
 KeyedPropertySet kpsDevice = new
 KeyedPropertySet(myVai);
 kpsDevice.putString("MAC Address", sMACAddr);
 Device d = Device.create(myVai, kpsDevice);
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

For more information about creating entities, see Creating Entities.

Updating a Device
As part of your device management practices, the System Device Manager should input
information for each Vocera badge. This information will allow you to manage and track the
badges that connect to the Vocera system.

Updating a device

//import java.text.*;

public static void updateDevice(Device d){
 try {
 DateFormat df = new SimpleDateFormat("MM/dd/yyyy");
 long lTracking = df.parse("11/30/2013").getTime();
 Site siteSC = Site.getSiteWithName(myVai, "Santa Cruz");
 Group gEDN = Group.getGroupWithName(myVai, "E D Nurse",
 "Global");

 KeyedPropertySet kpsDevice = new
 KeyedPropertySet(myVai);
 kpsDevice.putString("Serial No", "A2AM070505D4");
 kpsDevice.putString("Status", "Active");
 kpsDevice.putGroup("Owning Group",gEDN);
 kpsDevice.putLong("Tracking Time", lTracking);
 kpsDevice.putSite("Site", siteSC);
 kpsDevice.putBoolean("Shared", false);
 d.update(myVai, kpsDevice);
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

The serial number for a device must be consistent with the device's MAC address. Otherwise, the
update() method will fail and throw an exception.

For more information about updating entities, see Updating Entities.

WORKING WITH ENTITIES

18 VOCERA ADMINISTRATION INTERFACE GUIDE

Getting Devices
The Device class provides several methods for getting devices. There are different methods for
retrieving a set of devices and for retrieving a single device.

You can use the following methods to return a set of devices. Each of these methods returns a
DeviceSet object, which provides methods to manipulate the set.

Table 2: Methods for retrieving a set of devices

Method Description

getDevices(VAI vai) Returns the set of all devices.

getDevices(VAI vai, java.lang.String
sSiteName)

Returns the set of devices for a given site.

getDevicesWithLabel(VAI vai,
java.lang.String sLabel)

Returns the set of devices with a specified
label.

getDevicesWithOwner(VAI vai, Group
gOwner)

Returns the set of devices with a specified
owning group.

getDevicesWithOwner(VAI vai, Group
gOwner, java.lang.String sSiteName)

Returns the set of devices with a specified
owning group at a particular site.

Table 3: Methods for retrieving an individual device

Method Description

getDeviceWithInternalName(VAI vai,
java.lang.String sInternalName)

Returns the device with the specified internal
name.

getDeviceWithMACAddr(VAI vai,
java.lang.String sMACAddr)

Returns the device with the specified MAC
address.

getDeviceWithSerialNo(VAI vai,
java.lang.String sSerialNo)

Returns the device with the specified serial
number.

Getting devices

public static void getSCDevices(){
 try {
 Device d;
 //Get the devices at the Santa Cruz site
 DeviceSet dsSC = Device.getDevices(myVai, "Santa Cruz");
 for (int i = 0; i < dsSC.size(); i++) {
 d = dsSC.elementAt(i);

 //Print the MAC address of each device at Santa Cruz
 System.out.println("MAC Address: " +
 d.getName());

 //Print the serial number of each device
 System.out.println("Serial No: " +
 d.getSerialNo());
 }
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Getting the Color or Type of a Device
Vocera devices are either white or black. All B1000A badges are black. B2000 badges can be
black or white. You can use the Device.getColorFromSerialNo() method to determine the
color of a device based on its serial number.

WORKING WITH ENTITIES

19 VOCERA ADMINISTRATION INTERFACE GUIDE

A Vocera device can be one of three types: B2000, B1000A, or an unknown type. The Device
class provides integer constants to represent these types. You can use these constants as the
parameter value for getDeviceType(int iType) to return a localized String representation of
the device type.

The following example shows how to get the color and type of a device.

Getting the color and type of a device

public static void getColorAndType(Device d){
 try {
 //Get the color of the device
 String sColor = d.getColorFromSerialNo(d.getSerialNo());
 //Print the color
 System.out.println(sColor);

 //Get the device type of the device
 String sType = Device.getDeviceType(d.getDeviceType());
 //Print the device type
 System.out.println(sType);
 }
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Modifying Device Status Choices
Vocera provides a list of default status values for devices, such as "Unregistered," "Inventory,"
and "Active." However, you can define your own status choices based on the device
management processes you have implemented.

The following example shows how to add, delete, and rename a device status.

Modifying device status choices

public static void modifyStatuses(){
 try {
 //Add a new status called "Assigned"
 Device.addStatusChoice(myVai, "Assigned",
 "Badge has been assigned to a group.");

 //Remove the status "Active" and replace it with
 "Assigned"
 Device.removeStatusChoice(myVai, "Active", "Assigned");

 //Change the name of status "Received for Repair"
 //to "In Repair"
 Device.renameStatusChoice(myVai, "Received for Repair",
 "In Repair", "System Device Manager has received
 the Vocera device for diagnosis and repair.");
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Uploading Badge Logs
If you know the MAC address of a badge that is connected to the Vocera Server, you can use the
Device.uploadBadgeLogs() method to upload the logs from the badge to the Vocera Server
for troubleshooting purposes. To get the MAC address for the badge currently associated with a
user, you can use the User.getBadgeStatus() method. If you already know the MAC address
of a badge, you can get the associated user by using the User.getUserWithMACAddr()
method.

WORKING WITH ENTITIES

20 VOCERA ADMINISTRATION INTERFACE GUIDE

Note: The uploadBadgeLogs() method is not supported on B1000A badges and
Vocera smartphones.

The badge assembles logs files into a single .tar.gz file and uploads the file to the \vocera
\logs\BadgeLogCollector\uploads directory on the Vocera Server. The format of the
filename is DATETIME-USERNAME-BADGEMAC-udd.tar.gz.

The following example shows how to upload badge logs.

Uploading badge logs

public static void uploadBadgeLogs(VAI myVai, String userID)
{
 int iResultCode = -1;
 String macAddr = "";
 try
 {
 BadgeStatus[] bsa = User.getBadgeStatus(vai);
 BadgeStatus bsObj = null;
 for (int i = 0; i < bsa.length; i++) {
 bsObj = bsa[i];
 User uTemp = bsObj.u;
 if (uTemp.getUserID().equals(userID)) {
 macAddr = bsObj.sMACAddr;
 break;
 }
 }
 if (!macAddr.equals("")) {
 Device.uploadBadgeLogs(myVai, macAddr);
 if (iResultCode == -1) {
 System.out.println("Badge logs were uploaded.");
 }
 } else {
 System.out.println("Error: " + userID +
 " is not logged into a B2000 or B3000 badge.");
 }
 }
 catch (VAIException e)
 {
 iResultCode = e.getResultCode();
 System.out.println(e.getMessage());
 }
}

Working with Groups
Use the Group class to work with Vocera groups. Vocera groups organize users into roles
such as Floor Manager, Cashier, Nurse, Cardiologist, Executive, and so forth. Groups provide
a way to leave messages for many users at once ("Send a message to Nurses Assistants"), or
to call someone who fits a specific role ("Call a sales person"), belongs to a certain department
("Call Accounts Receivable"), or has some other skill or authority that the caller requires ("Call a
manager"). See the Vocera Administration Guide for complete information about groups.

WORKING WITH ENTITIES

21 VOCERA ADMINISTRATION INTERFACE GUIDE

Getting Subgroups
A group can have multiple levels of subgroups contained within it. To work with subgroups,
the Group class provides the getSubgroups() method. This method takes one parameter,
a boolean value that specifies whether to return only immediate subgroups or all subgroups,
including nested subgroups. For example, the following figure shows the group structure
for the I C U department group, which has six subgroups. Given a parameter value of true,
the getSubgroups() method would return a set that did not include the I C U Float Nurse
subgroup because it is not a direct member of I C U. Given a parameter value of false, the
getSubgroups() method would return a set containing all six subgroups, including I C U Float
Nurse.

Figure 2: Subgroups

The following code example shows how to get all subgroups for the I C U department group:

Getting subgroups

void getICUSubgroups(VAI myVai) {
 try {
 Group gICU = Group.getGroupWithName(myVai, "I C U",
 "Global");
 GroupSet gsICUSubs = gICU.getSubgroups(true);
 for (int i=0; i < gsICUSubs.size(); i++) {
 System.out.println(gsBICUSubs.elementAt(i).getName());
 }
 }catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Managing Group Membership
Group membership can change over time, and in some environments it can change frequently. A
user can be a member of multiple groups at the same time. An administrator can add or remove
group members either with voice commands or through the Administration Console. Users can
remove themselves from groups, and with the proper permission, they can add themselves or
other users to groups.

The Group class provides the getMembers() method. This method takes one parameter, a
boolean value that specifies whether to return only direct group members or direct members
and members of nested groups. For example, the following figure shows a group structure
where the Employees group contains six members: four direct members and two members in a
nested group named Managers. Given a parameter value of true, the getMembers() method
would return a set containing the four direct members. Given a parameter value of false, the
getMembers() method would return a set containing all six members.

WORKING WITH ENTITIES

22 VOCERA ADMINISTRATION INTERFACE GUIDE

Figure 3: Nested groups

The following code example shows how VAI can manage group membership.

Managing groups

void manageGroups(VAI myVai) {

 try {

 User u;
 UserSet us = new UserSet(myVai);

 // Get the Managers group in the Global site
 Group gMgr =
 Group.getGroupWithName(myVai,"Managers","Global");

 // Get a User with the ID "jfernandez"
 u = User.getUserWithUserID(myVai, "jfernandez");

 // Add jfernandez to the user set
 us.add(u);

 // Remove jfernandez from the Managers group
 gMgr.removeMember(u);

 // Get another User with the ID "hwang"
 u = User.getUserWithUserID(myVai, "hwang");

 // Add hwang to the user set
 us.add(u);

 // Add hwang to the Managers group
 gMgr.addMember(u);

 // Create a new keyed property set for a group
 KeyedPropertySet kpsG = new KeyedPropertySet(myVai);
 kpsG.putString("Name","Technicians");
 kpsG.putString("Spoken Member Name", "a technician");

 // Create a new group called Technicians
 Group gTech = Group.create(myVai, kpsG);

 // Add members from the user set to the group
 for (int i = 0; i < us.size(); i++) {
 gTech.addMember(us.elementAt(i));
 }

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }

WORKING WITH ENTITIES

23 VOCERA ADMINISTRATION INTERFACE GUIDE

}

When you remove a member from a group, you do not delete the user from the database.

Note: The Group.updateMembers(EntitySet esMembers) method simplifies updates
to group membership. This sets the members of a group in one operation, which is more
efficient than making repeated calls to addMember() and removeMember(). All existing
members of the group are removed, and members in esMembers are added in order. For
more information about the updateMembers() method, see the Javadoc for the Group
class.

Managing Group Permissions
When you create or modify a group, you specify values for properties that control the way the
group behaves and the way users interact with it. Among these properties are permissions, such
as Call Toll Numbers, Initiate Urgent Broadcasts, and Erase Voiceprint of Another User.

A Group object's properties include two sets: Permissions and AntiPermissions. The
Permissions set specifies the permissions that are granted to members of that group, while the
AntiPermissions set specifies permissions that are revoked for those members even if they belong
to another group that confers the permissions. Both of these sets have the same keys, and all the
values are of type boolean. To explicitly grant a permission, set the corresponding property in
the Permissions set to true. To explicitly revoke a permission, set the corresponding property in
the AntiPermissions set to true, as in, "Yes, it's true. I really want to revoke this permission." A
permission cannot be both granted and revoked for the same group simultaneously. Therefore, a
permission that has been revoked automatically overrides the granting of that same permission.

The complete set of permissions available to any single user is the total list of permissions granted
to all the groups of which he or she is a member. Therefore, setting a property value to false
in the Permissions set does not necessarily deny that permission to a user, nor does setting a
property value to false necessarily grant that permission. The user may belong to other groups
for which the property has been explicitly granted or revoked. For more information about working
with permissions, see Vocera Administration Guide.

The following code example shows how VAI can explicitly grant and revoke permissions for a
group.

Granting and revoking permissions for a group

public static int demoPermissions() {
 int iResultCode = -1;
 try {
 Group g =
 Group.getGroupWithName(myVai, "Doctors", "Global");

System.out.println("Before");
KeyedPropertySet kpsG = g.getProperties();
KeyedPropertySet kpsP = kpsG.getKeyedSet("Permissions");
KeyedPropertySet kpsAP =
 kpsG.getKeyedSet("AntiPermissions");
System.out.println(kpsP.toString());
System.out.println(kpsAP.toString());

 KeyedPropertySet kpsPerms =
 new KeyedPropertySet(myVai);
 KeyedPropertySet kpsAntiPerms =
 new KeyedPropertySet(myVai);

 //Explicitly grant these permissions
 kpsPerms.putBoolean("Call Toll-Free Numbers", true);
 kpsPerms.putBoolean("Call Toll Numbers", false);

 //Explicitly revoke these permissions
 kpsAntiPerms.putBoolean("Erase your Voiceprint", true);

WORKING WITH ENTITIES

24 VOCERA ADMINISTRATION INTERFACE GUIDE

 kpsAntiPerms.putBoolean("Record your Voiceprint",
 false);

 KeyedPropertySet kpsGroup =
 new KeyedPropertySet(myVai);
 kpsGroup.putSet("Permissions", kpsPerms);
 kpsGroup.putSet("AntiPermissions", kpsAntiPerms);

 g.update(myVai, kpsGroup);
 iResultCode = 0;

System.out.println("After");
kpsG = g.getProperties();
kpsP = kpsG.getKeyedSet("Permissions");
kpsAP = kpsG.getKeyedSet("AntiPermissions");
System.out.println(kpsP.toString());
System.out.println(kpsAP.toString());

 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 System.out.println(ve.getMessage());
 }
 return iResultCode;
}

Working with Locations
Use the Location class to work with Vocera locations. Locations are names of places to which
you assign one or more access points. When a badge connects to an access point, the Vocera
server is able to report the corresponding location. The location names also appear in the Badge
Status Monitor, replacing the MAC address of the access point.

Locations are identified by names. Therefore, in addition to the methods for standard entity
operations, the Location class provides methods that return a Location or a LocationSet
object, given various combinations of location names, site names, and internal names.

The following code example returns information about the Location objects defined for a specified
site (or for all sites, if a site is not specified).

Getting location information

public String getLocationInfo(String sSite) {
 String sCurrSite = "";
 String sResult = "";
 String sCurrName = "No name";
 String sCurrDesc = "";
 KeyedPropertySet kpsLoc = new KeyedPropertySet(myVai);
 try {
 LocationSet lsSet = Location.getLocations(myVai, sSite);
 if (lsSet.size() > 0) {
 for (int i = 0; i < lsSet.size(); i++) {
 Location loc = lsSet.elementAt(i);
 sCurrName = loc.getName();
 sCurrSite =
 (sSite.equals("") || sSite == null)
 ? loc.getSiteName() : sSite;
 kpsLoc = loc.getProperties();
 sCurrDesc = kpsLoc.getString("Description");
 sResult = sResult + "\n" +
 "[Name] " + sCurrName +"\t" +
 "[Site] " + sCurrSite +"\t" +
 "[Description] " + sCurrDesc;
 }
 } else {
 sResult = "There are no Locations in the database.";
 }
 }catch (VAIException ve) {
 sResult = ve.getMessage();

WORKING WITH ENTITIES

25 VOCERA ADMINISTRATION INTERFACE GUIDE

 }
 return sResult;
}

The following code example shows how to create a location and set its properties, including
properties for Access Points and Neighbors.

Creating a location

private void createLocation() {

 try {

 Location l;

 // Create a new keyed property set for a location
 KeyedPropertySet kpsL = new KeyedPropertySet(myVai);
 kpsL.putString("Name","Lab");
 kpsL.putString("Description", "Laboratory");
 kpsL.putSite("Site", "s-global");
 kpsL.putString("Spoken Name", "laboratory");

 // Create an indexed property set for access points
 IndexedPropertySet ipsAP = new
 IndexedPropertySet(myVai);
 ipsAP.add("00008A886356");
 ipsAP.add("00004A556454");
 kpsL.putSet("Access Points", ipsAP);

 // Create an indexed property set for neighbors
 IndexedPropertySet ipsN = new IndexedPropertySet(myVai);
 l = Location.getLocationWithName(myVai, "Oakmont",
 "Global");
 ipsN.add(l);
 l = Location.getLocationWithName(myVai, "Spyglass",
 "Global");
 ipsN.add(l);
 kpsL.putSet("Neighbors", ipsN);

 // Create the location
 Location lLab = Location.create(myVai, kpsL);

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

Working with Sites
Use the Site class to work with Vocera sites. In Vocera, a site is a distinct physical location
that shares a centralized Vocera server with one or more other physical locations. Site profiles
associate users and groups with specific physical locations.

Sites are identified by names. Therefore, in addition to the methods for standard entity operations,
the Site class provides methods that return a Site or a SiteSet object, given various
combinations of site names and internal names.

Unlike some other entity classes, the Site class has some properties that VAI cannot update. To
get a complete list of all Site properties (read/write and read-only), call getPropertyKeys().
To get a list of read/write properties (for example, to display in a UI for editing), call
getPropertyKeysForUpdate().

WORKING WITH ENTITIES

26 VOCERA ADMINISTRATION INTERFACE GUIDE

The Site class also provides methods for moving entities between sites. The
moveEntitiesToSite() method is overloaded, enabling you to move all entities from one site to
another, or to specify a set of entities to move. The following code example moves a group and
all of its members to another site.

Moving a group to another site

public int transferGroup(String sGroupName,
 String sFromSite,
 String sToSite)
{
 int iResultCode = -1;
 try {
 Group g =
 Group.getGroupWithName(myVai, sGroupName, sFromSite);
 EntitySet es = g.getMembers(false);
 es.add(g);
 Site siFrom = Site.getSiteWithName(myVai, sFromSite);
 siFrom.moveEntitiesToSite(es, sToSite);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Many Site object properties configure telephony properties for a site, and so enable
programmatic access to the features of the Telephony screen in the Administration Console. As
in the Administration Console, many telephony properties cannot be modified through VAI unless
telephony is enabled. For example, suppose that you want the Telephony server to omit the area
code from the dial string when placing a local call. Using the Administration Console, you would
perform the following steps.

1. Display the Basic Info page of the Telephony screen.

2. Verify that Enable Telephony Integration is selected (checked).

3. Display the Access Codes page of the Telephony screen.

4. Verify that Omit Area Code when Dialing Locally is selected (checked).

5. Save changes, if necessary.

The following code example shows the corresponding steps in VAI.

Omitting the area code from the dial string

public static int omitAreaCode(String sSiteName) {
 int iResultCode = -1;
 try {
 Site si = Site.getSiteWithName(myVai, sSiteName);
 KeyedPropertySet kpsSite = si.getProperties();
 KeyedPropertySet kpsTelInfo =
 kpsSite.getKeyedSet("Telephony Info");
 boolean bTelEnabled =
 kpsTelInfo.getBoolean("Telephony Enabled");
 KeyedPropertySet kpsNewTelInfo =
 new KeyedPropertySet(myVai);

 if (bTelEnabled == false) {
 kpsNewTelInfo.putBoolean("Telephony Enabled", true);
 KeyedPropertySet kpsUpdate = new
 KeyedPropertySet(myVai);
 kpsUpdate.putSet("Telephony Info", kpsNewTelInfo);
 si.update(myVai, kpsUpdate);
 }

 kpsNewTelInfo.putBoolean("Seven Digit Dialing", true);

WORKING WITH ENTITIES

27 VOCERA ADMINISTRATION INTERFACE GUIDE

 KeyedPropertySet kpsUpdate = new
 KeyedPropertySet(myVai);
 kpsUpdate.putSet("Telephony Info", kpsNewTelInfo);
 si.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Working with Users
Adding new users to the system and updating information for existing users are two primary
tasks of a Vocera system administrator. When you add a user (or when a user self-registers), the
Vocera system creates a profile for that user in the Vocera server database. Use the User class to
work with Vocera user profiles.

After a user has had some time to work with the badge, you may need to edit the user’s profile
to add features that may be useful or remove features that the user does not want. In addition
to a user’s name and contact information, the profile stores user preferences, such as which
Genie persona will prompt the user, whether warning tones are played when the badge has a low
battery, or when the user has a new voice or text message.

Unlike some other entity classes, the User class has some properties that VAI cannot
update. To get a list of User properties that you can read, call getPropertyKeys(). To
get a list of properties that you can modify (for example, to display in a UI for editing), call
getPropertyKeysForUpdate().

Note: For security reasons, password properties cannot be read but they can be
updated.

Identifying Users
Users are identified by names. Therefore, in addition to the methods for standard entity
operations, the User class provides methods for working with names (getFirstName(),
getLastName()). Also, the methods getUserWithName() and getUsersWithName() are
overloaded to return a User or a UserSet object, respectively, given various combinations of first
names, last names, and site names.

Because it's not uncommon for two or more users to have the same first and last names, the
User class provides the following methods for distinguishing between users:

Table 4: Methods for distinguishing between users

Method Description

getUserWithMACAddr(VAI vai,
java.lang.String sMACAddr)

Returns user with a given MAC address, or null
if no such user exists.

getUserWithUserID(VAI vai,
java.lang.String sUserID)

Returns user with a given User ID, or null if no
such user exists.

getUserWithInternalName(VAI vai,
java.lang.String sInternalName)

Returns user with a given internal name.

Users and Group Membership
To find out which groups a user belongs to, call the getContainingGroups() method. This
method takes a boolean argument that specifies whether to return only those groups of which the
user is an immediate (direct) member, or to return all the groups of which the user is a member.

WORKING WITH ENTITIES

28 VOCERA ADMINISTRATION INTERFACE GUIDE

For example, suppose that the user Jane Doe is a member of the Charge Nurses group,
and the Charge Nurses group is a member (subgroup) of the Nurses group. A call to
getContainingGroups(true) would return only the Charge Nurses group, while a call to
getContainingGroups(false) would return both the Charge Nurses group and the Nurses
group.

The following code example prints the names of containing groups for a user specified by user ID.

Getting groups for a user

public int getGroupsForUser(String sUserID,
 boolean bImmediate) {
 int iResultCode = -1;
 try {
 User u = User.getUserWithUserID(myVai, sUserID);
 GroupSet gs = u.getContainingGroups(bImmediate);
 Group gTemp = null;
 for (int i = 0; i < gs.size(); i++) {
 gTemp = gs.elementAt(i);
 System.out.println(gTemp.getName());
 }
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

When the value of the bImmediate parameter of getContainingGroups() is true, the method
retruns only those groups in which the user is a direct member. Otherwise, it returns all the
groups in which the user is a member.

Badge Users and Badge Status
The User class also provides getBadgeStatus(), a static method that returns status information
about every user who is currently logged in and online. This method returns an array of
BadgeStatus objects, where each BadgeStatus object has the public fields defined in the
following table.

Note: The getBadgeStatus() method returns an array that contains a BadgeStatus
object for every user who is currently logged in and online. Therefore, when a large
number of users are online, the resulting array is large, too.

Table 5: BadgeStatus fields

Name Type Description

u User Represents a badge user.

sIPAddr String Dotted form of the user's IP address.

sLocation String Name of the user's current location.

bDND boolean True if the user is in Do Not Disturb mode.

bHold boolean True if the user is has a call on hold.

sCallState String Current call state. One of: Inactive, Call, Genie,
Conference.

siLocalSite Site Represents the user's current site.

sMACAddr String MAC address of the device.

The following code example uses the getBadgeStatus() method and a BadgeStatus object to
get the name of the location with which a specified badge user is associated, if that user is online.

Getting the current location for a badge

WORKING WITH ENTITIES

29 VOCERA ADMINISTRATION INTERFACE GUIDE

public String getUserLocation(String sUserID) {
 String sLoc = "";
 try {
 BadgeStatus[] bsa = User.getBadgeStatus(myVai);
 BadgeStatus bsObj = null;
 for (int i = 0; i < bsa.length; i++) {
 bsObj = bsa[i];
 User uTemp = bsObj.u;
 if (uTemp.getUserID().equalsIgnoreCase(sUserID)) {
 sLoc = bsObj.sLocation;
 break;
 } else {
 sLoc = sUserID + " is not online.";
 }
 }
 } catch (VAIException ve) {
 sLoc = ve.getMessage();
 }
 return sLoc;
}

Importing User Data
This section describes one way to import user data from an external database into the Vocera
database. Several aspects of this sample have been simplified for clarity. For example, table
structures and relationships are likely to be more complex in a production environment. Similarly,
the Java code omits details such as error checking.

The following code example queries an external MySQL database using JDBC, then uses the
results to create users in the Vocera database.

Importing users from an external database

import java.sql.*;
import vai.*;

public class DbDemo {
 public static VAI myVai = new VAI();

 private class MyVaiListener implements VAIListener {
 public void handleServerStateChange(int iState) {
 System.out.println("Handling Vocera server state
 change: "
 + VAI.getServerStateString(iState));
 }

 public void handleReportStatus(String sTitle,
 int iStatus,
 String sStatus,
 int iPercentDone,
 String sError)
 {
 System.out.println("Reporting a server status
 change.");
 }
 } // MyVaiListener

 public MyVaiListener myL;

 public DbDemo() {
 myL = new MyVaiListener();
 }

 // Database connnection parameters.
 // Replace them with values for your database.
 static String sHost = "host";
 static String sDbName = "database";
 static String sUsername = "user";
 static String sPassword = "password";

WORKING WITH ENTITIES

30 VOCERA ADMINISTRATION INTERFACE GUIDE

 // Build a JDBC connection string.
 // Values shown are for MySQL.
 static String sThinConn = "jdbc:mysql://" +
 sHost + "/" + sDbName;

 // Edit this value for a database other than MySQL.
 static String sDriverName = "com.mysql.jdbc.Driver";

 public static void main(String[] args) {
 DbDemo demo = new DbDemo();

 try {
 // Replace vs_name with your Vocera server host name.
 myVai.open("vs_name",
 "Administrator",
 "admin",
 demo.myL);

 // Connect to the database.
 Class.forName(sDriverName).newInstance();
 Connection conn =
 DriverManager.getConnection(sThinConn,
 sUsername,
 sPassword);
 // Define and execute a query.
 Statement stmt = conn.createStatement();
 String query =
 "select e.UserID, e.FirstName, e.LastName, " +
 "d.CostCenter " +
 "from EMP e, DEPT d " +
 "where e.DeptID = d.ID";

 ResultSet rs = stmt.executeQuery(query);

 // Use query results to create Vocera users.
 KeyedPropertySet kpsUser = null;
 User u = null;
 while (rs.next()) {
 kpsUser = new KeyedPropertySet(myVai);
 kpsUser.putString("User ID",
 rs.getString("UserID"));
 kpsUser.putString("First Name",
 rs.getString("FirstName"));
 kpsUser.putString("Last Name",
 rs.getString("LastName"));
 kpsUser.putString("Cost Center",
 rs.getString("CostCenter"));
 // Assign a default password.
 kpsUser.putString("Password", "vocera");

 u = User.create(myVai, kpsUser);
 System.out.println("Created user: " +
 rs.getString("UserID"));
 }
 // Close database connection.
 conn.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " +
 ve.getMessage());
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 // Close VAI connection.
 myVai.close();
 }
}

WORKING WITH ENTITIES

31 VOCERA ADMINISTRATION INTERFACE GUIDE

The sample external database contains tables named DEPT and EMP created by the following
SQL code.

SQL code for an external database

DROP TABLE IF EXISTS `DEPT`;
CREATE TABLE `DEPT` (
 `ID` int NOT NULL,
 `Name` varchar(50) NOT NULL,
 `CostCenter` int default NULL,
 UNIQUE KEY `ID` (`ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `EMP`;
CREATE TABLE `EMP` (
 `UserID` varchar(70) NOT NULL,
 `LastName` varchar(50) NOT NULL,
 `FirstName` varchar(50) NOT NULL,
 `DeptID` int default NULL,
 FOREIGN KEY (`DeptID`) REFERENCES DEPT(`ID`)
 ON DELETE CASCADE,
 UNIQUE KEY `UserID` (`UserID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

The DEPT table was populated by running the following SQL code.

SQL code that populates the DEPT table

insert into `DEPT` values(1, 'Engineering', 100)
insert into `DEPT` values(2, 'Marketing', 200)
insert into `DEPT` values(3, 'QA', 101)
insert into `DEPT` values(4, 'Sales', 300)

The EMP table was populated by running the following SQL code.

SQL code that populates the EMP table

insert into `EMP` values('jdoe', 'Doe', 'Jane', 1)
insert into `EMP` values('mdavis', 'Davis', 'Mills', 2)
insert into `EMP` values('cparker', 'Parker', 'Charlotte',
 3)
insert into `EMP` values('tmonk', 'Monk', 'Thelma', 4)
insert into `EMP` values('dgillespie', 'Gillespie', 'Desi',
 1)

Sending a Text Message
The User class has a sendTextMessage() method that sends a text message from one user to
a set of users and groups. The following example is a method that uses sendTextMessage() to
send a reminder to the badge of a user.

WORKING WITH ENTITIES

32 VOCERA ADMINISTRATION INTERFACE GUIDE

public void sendReminder(String sUserID, String sMessage) {
 try {
 String sSubject = "Reminder";
 User u = User.getUserWithUserID(myVai, sUserID);
 UserSet usMessageTo = new UserSet(myVai);
 usMessageTo.add(u);
 u.sendTextMessage(usMessageTo, sSubject, sMessage);
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

Figure 4: Sending a text message

For more information about the sendTextMessage() method, see the Javadoc for the User
class.

33 VOCERA ADMINISTRATION INTERFACE GUIDE

Working With Properties

VAI uses collections of key-value pairs called property sets to define and manipulate the
characteristics of Vocera entities and the Vocera system. The base class is PropertySet, an
abstract class that extends java.lang.Object and defines methods inherited by the following
classes:

• The KeyedPropertySet class implements methods you can use to manipulate sets of key-
value pairs where each key is a string. See Using Keyed Property Sets.

• The IndexedPropertySet class implements methods you can use to manipulate indexed
sets of values. See Using Indexed Property Sets.

Using Keyed Property Sets
A KeyedPropertySet object represents the attributes of a Vocera entity or the Vocera system
as a set of key-value pairs where each key is a string. For example, the key-value pair for a user's
desk extension could be:

"Desk Phone" "1234".

Each Entity subclass provides a static method (for example, User.getPropertyKeys) that
returns a String[] array containing the property key names for that class. Also, because some
entity property values cannot be changed, each Entity subclass provides a static method (for
example, User.getPropertyKeysForUpdate) that returns a list of the keys for properties that
can be updated. The following code prints the property key names for the User class.

Getting property keys

String[] saKeys = User.getPropertyKeys();
for (int i = 0; i < saKeys.length; i++)
 System.out.println(saKeys[i]);

The following listing shows a portion of the output returned by User.getPropertyKeys().

User ID
Password
Last Name
First Name
Alt Spoken Names
Alt Spoken Names.*
Ident Phrase
Email Address
...
Buddies
Buddies.*
Buddies.*.Name
Buddies.*.Nick Name
Buddies.*.VIP
Buddies.*.RingTone
...

WORKING WITH PROPERTIES

34 VOCERA ADMINISTRATION INTERFACE GUIDE

Key names are strings. A key name followed by an asterisk indicates that the corresponding
property value is itself an indexed property set. For example, the value of the Alt Spoken Names
property is an indexed property set of strings, where each string represents an alternate spoken
name.

In addition, the Entity class provides a getProperties method that returns a complete
property set for any given subclass. For example, the following code prints the properties of a
specified location.

Getting location properties

LocationSet ls = Location.getLocations(myVai);
if (ls.size() > 0) {
 Location loc = ls.elementAt(0);
 KeyedPropertySet kps = loc.getProperties();
 System.out.println(kps.toString());
}

Here is an example of the output generated by the previous code example. KVSet refers to a
keyed property set, whereas XVSet refers to an indexed one.

KVSet
[
 Name = Cafeteria
 Spoken Name = the caff
 Description = The main cafeteria
 Site = s-global
 Access Points = XVSet
 [
 1 = 00064b4e9146
]
 Neighbors = XVSet
 [
 1 = l-h_q_lobby
]
]

When you update an entity, use a KeyedPropertySet to store the key-value pairs that you want
to update. The set should contain only the properties that you want to update. For example,
suppose you need to change a user's last name. You would create and submit a property set
that contains only one key-value pair: the key "Last Name" and the new value for the user's last
name. Do not fetch a set of all the user's properties, enter a new last name, and then submit
the entire set. You might overwrite changes made by someone else, either through a console or
another VAI instance, made in between your fetch and your posting.

Using a KeyedPropertySet to update an entity

try {
 KeyedPropertySet kps = new KeyedPropertySet(myVai);
 kps.putString("Description", "NICU Nurse Station");
 Location loc =
 Location.getLocationWithInternalName(myVai,
 "l-station3");
 loc.update(myVai, kps);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

WORKING WITH PROPERTIES

35 VOCERA ADMINISTRATION INTERFACE GUIDE

Using Indexed Property Sets
The IndexedPropertySet class extends the PropertySet class. An indexed property set is like
an array of property values, each of which can be a keyed or indexed property set, or a string.
Indexed property sets are homogeneous in the sense that each indexed value is of the same
type.

You can specify an index when storing or retrieving an IndexedPropertySet element. Index
values are integers, and the index of the first element in an IndexedPropertySet is 0. You can
also put a property value into an IndexedPropertySet without specifying an index, in which
case the property value is appended to the set.

The following code example shows some techniques for creating and querying an
IndexedPropertySet.

Creating and querying an IndexedPropertySet

public static int createAltSpokenNames() {
 int iResultCode = -1;
 try {
 // Search for existing user.
 String sUid = "Doe,Janet";
 UserSet usGlobal = User.getUsers(myVai);
 int iFind = usGlobal.findFirstMatch(sUid);
 User u = usGlobal.elementAt(iFind);

 // Add new alternate spoken names
 IndexedPropertySet ips = new IndexedPropertySet(myVai);
 ips.add("Jane");
 ips.add("J D");
 KeyedPropertySet kpsASN = new KeyedPropertySet(myVai);
 kpsASN.putSet("Alt Spoken Names", ips);
 u.update(myVai, kpsASN);

 // How to get elements from the Alt Spoken Names
 property set
 KeyedPropertySet kpsUser = u.getProperties();
 ips = kpsUser.getIndexedSet("Alt Spoken Names");
 String sASN2 = (String)ips.elementAt(1);
 System.out.println("Alt Spoken Name 2 = " + sASN2);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Here is a string representation of the indexed set of alternate spoken names created in the
previous code example. In contrast to the integer indexes in the code example (which begin with
0), the indexes shown in the output begin with 1.

Alt Spoken Names = XVSet
 [
 1 = Jane
 2 = J D
]

The following code example shows some techniques for updating elements in an
IndexedPropertySet.

Updating elements in an IndexedPropertySet

public static int updateAltSpokenNames() {
 int iResultCode = -1;

WORKING WITH PROPERTIES

36 VOCERA ADMINISTRATION INTERFACE GUIDE

 try {
 // Search for existing user.
 String sUid = "Doe,Janet";
 UserSet usGlobal = User.getUsers(myVai);
 int iFind = usGlobal.findFirstMatch(sUid);
 User u = usGlobal.elementAt(iFind);

 // Get the indexed set of Alt Spoken Names
 KeyedPropertySet kpsUser = u.getProperties();
 IndexedPropertySet ipsASN =
 kpsUser.getIndexedSet("Alt Spoken Names");

 // Replace ASN "Jay Jay" with "Miss Doe"
 String sOldName = "Jay Jay";
 String sCurrentName = "";
 String sNewName = "Miss Doe";
 for (int i = 0; i < ipsASN.size(); i++) {
 sCurrentName = (String)ipsASN.elementAt(i);
 if (sCurrentName.equals(sOldName)) {
 ipsASN.setElementAt(sNewName, i);
 }
 }

 // Update the user's alternate spoken names
 KeyedPropertySet kpsUpdate = new
 KeyedPropertySet(myVai);
 kpsUpdate.putSet("Alt Spoken Names", ipsASN);
 u.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Persisting Application Data
If your VAI application needs to persist data or settings from one session to the next, you need to
consider implementing some type of persistent data storage. There are several ways to do this,
including using configuration files or relational database systems. VAI provides a simple way to
persist application data by allowing you to write a PropertySet file to the Vocera Server, where
the application can reliably read the data for subsequent sessions.

The PropertySet class provides the following methods for persisting application data on the
Vocera Server.

Table 6: Methods for writing and reading application data

Method Description

writeApplicationData(java.lang.String
sAppName, java.lang.String sFileName,
java.lang.String sPropertyPath)

Writes application data to application data file
stored on the Vocera server.

readApplicationData(VAI vai,
java.lang.String sAppName,
java.lang.String sFileName,
java.lang.String sPropertyPath)

Reads data from an application data file stored
on the Vocera Server into a PropertySet.

The following example shows how to use VAI methods to write and read application data.

Writing and reading application data

public static void writeAppData(String sAppName, String
 sFile){

WORKING WITH PROPERTIES

37 VOCERA ADMINISTRATION INTERFACE GUIDE

 try {
 //Create a new keyed property set
 KeyedPropertySet kpsApp = new KeyedPropertySet(myVai);
 //Add some properties to the set
 kpsApp.putString("Version", "1.0");
 kpsApp.putString("Role", "Administrator");
 kpsApp.putString("Unit", "CICU");

 //Create an indexed property set of colors
 //and add it to the set
 IndexedPropertySet ipsColors = new
 IndexedPropertySet(myVai);
 ipsColors.add("Red");
 ipsColors.add("Green");
 ipsColors.add("Blue");
 kpsApp.putSet("Colors", ipsColors);

 //Write the application data to a file
 kpsApp.writeApplicationData(sAppName,sFile,"");
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}
public static void readAppData(String sAppName, String
 sFile){
 try {
 //Create a new keyed property set
 KeyedPropertySet kpsApp = new KeyedPropertySet(myVai);
 //Read the application data
 kpsApp =
 (KeyedPropertySet)PropertySet.readApplicationData(
 myVai,
 sAppName,
 sFile,
 ""
);
 //Print the application data
 System.out.println(kpsApp.toString());
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Here is the output generated from the readAppData() method in the previous code example:

KVSet
[
 Version = 1.0
 Role = Administrator
 Unit = CICU
 Colors = XVSet
 [
 1 = Red
 2 = Green
 3 = Blue
]
]

For more details about using the writeApplicationData() and readApplicationData()
methods, see the Javadoc reference for the PropertySet class.

38 VOCERA ADMINISTRATION INTERFACE GUIDE

Managing the Vocera Server

This section describes how to control, manage, and monitor the Vocera Server.

Connecting to the Vocera Server
This topic describes techniques for opening a basic VAI connection, authenticated by a user
name and password, to a Vocera Server. See Security Features for more information about
controlling access to VAI applications and to the Vocera Server.

In the simplest case, you can construct a VAI object using the default constructor, then call
the open() method to establish a connection to the Vocera Server. Once you have opened a
VAI object, the other methods in VAI and those of other classes in the interface can be called.
Many of these methods (the static ones in particular) require the opened VAI object to be passed
as their first argument. At the end of the session, call close() to disconnect from the Vocera
Server.

Note: VAI cannot open a connection to a server that has been stopped. For example, if
a person has stopped the server by clicking the Stop button in the Vocera Control Panel,
someone must click the Start button to enable VAI to open a connection.

Using the VAI.open() Method
The VAI.open() call takes as arguments the IP address of the Vocera Server, user ID and
password, and an instance of the VAIListener class. The IP address must be a dotted
IP address, for example, 192.168.1.2. You cannot specify localhost or 127.0.0.1, its
equivalent loopback address. Do not specify a port.

To open a connection to a Vocera Cluster installation, specify a comma-separated list of the
addresses of the servers in the cluster. If a failover occurs, one of the standby nodes becomes
active and takes control of the cluster. The open() call also takes a VAIListener object as
an argument. This argument allows your application to monitor server state changes. Simple
applications may not need this information, and can use a null value for the parameter. If your
application loses its connection to the Vocera Server, it can monitor the server and automatically
reopen a connection when another server in the cluster becomes active. See Monitoring the
Vocera Server for details.

The user ID and password arguments are those normally prompted for by the Administration
Console. You can supply Administrator as the user name and the system administration
password as the password, or you can supply the user ID and password of a user who has full
administrative privileges. For simplicity, examples in this section hard-code the login credentials.
When security is a concern, an application should prompt for login credentials at the beginning of
each VAI session.

The following code listing shows how to use the open() method.

Opening a connection

import vai.*;

MANAGING THE VOCERA SERVER

39 VOCERA ADMINISTRATION INTERFACE GUIDE

public class VaiDemo {
 public static VAI myVai = new VAI();

 private class MyVaiListener implements VAIListener {
 public void handleServerStateChange(int iState) {
 System.out.println("Vocera server state has changed: "
 + VAI.getServerStateString(iState));
 }
 public void handleReportStatus(String s1, int i1,
 String s2, int i2,
 String s3) {
 System.out.println("Reporting a server status
 change.");
 }
 }

 public MyVaiListener myL;

 public VaiDemo() {
 myL = new MyVaiListener();
 }

 public int demoOpen() {
 int iResultCode = -1;
 try {
 myVai.open("192.168.1.2", "Administrator",
 "admin", this.myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println("Code: " + ve.getResultCode());
 System.out.println("Message: " + ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }

 public static void main(String[] args) {
 VaiDemo demo = new VaiDemo();
 int iResultCode = demo.demoOpen();
 if (iResultCode == 0) {
 myVai.close();
 }
 }
}

The following open() method passes null for the VAIListener object, which means it does not
monitor server state changes.

myVai.open("192.168.1.2","Administrator","admin",null);

The following open() method passes the hostname, an individual username who has full
administrative privileges, the user's password, and a VAIListener object, which means it
monitors server state changes.

myVai.open("vocserver","jdoe","sesame",this.myL);

The following open() method specifies a cluster of three Vocera Servers, Administrator username
and password, and a VAIListener object, which means it monitors server state changes.

myVai.open("voc1,voc2,voc3","Administrator","admin",this.myL);

Note: If Active Directory authentication has been enabled on the Vocera Server, there is
an alternative method called openWithADLogin() that allows you to open a connection
to the Vocera Server using Active Directory credentials. For details, see the Javadoc for
the VAI class.

MANAGING THE VOCERA SERVER

40 VOCERA ADMINISTRATION INTERFACE GUIDE

Result Codes for the open() Method
If a connection cannot be established, the open() method returns a result code to indicate why
it failed. The following table lists some of the reasons that the open() method might fail. For
complete information, see the Javadoc for the VAIException class.

Table 7: Error codes for a failed connection

Error Code Message

rcCannotConnect Could not connect to server.

rcConnectionRefused Connection to server refused.

rcInvalidPassword Invalid password.

rcLicenseLimit No more user licenses available.

rcLoginLimit No more login licenses available.

Getting Vocera Server Properties
The VAI class provides the following methods for querying the properties of a Vocera Server.

Table 8: Methods for querying the properties of a Vocera Server

Method Description

getSystemProperties() Returns a keyed property set for a specified
Vocera system. Properties include Product
Major Version, Product Major Version, Locale,
and Voice Prints Enabled.
See VAI Example for a code example.

getServerStateString(int iServerState) Returns a string describing the server's current
state. Values include "Could not connect
to server", "Server stopped", and "Server
started". A full list of server states is found in
the VAIListener interface.

getLicenseInfo() Returns a LicenseInfo object. A
LicenseInfo object exposes several public
fields that represent various aspects of a
Vocera license. For example, the cDigitalLines
field stores an integer value representing the
maximum allowed number of digital phone
lines.

The following code example uses a LicenseInfo object to get information about the number of
digital phone lines allowed and in use by a server.

Getting license information

public int getDigitalLinesInfo() {
 int iResultCode = -1;
 try {
 LicenseInfo li = myVai.getLicenseInfo();
 int iMaxLines = li.cDigitalLines;
 int iCurrLines = li.cCurrentDigitalLines;
 System.out.println("Currently using " +
 iCurrLines +
 " of " +
 iMaxLines +
 " available lines.");
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

MANAGING THE VOCERA SERVER

41 VOCERA ADMINISTRATION INTERFACE GUIDE

Setting Vocera Server Properties
The VAI class provides the updateSystemProperties() method. This method takes one
argument, a property set that contains the property values you want to update.

The following code example uses the updateSystemProperties() method to set properties for
Company, Days To Keep Messages, and Default User.Low Battery Alert.

Updating Vocera Server properties

private void updateSysProps() {
 try {

 // Create a new keyed property set for system properties
 KeyedPropertySet kpsSys = new KeyedPropertySet(myVai);
 kpsSys.putString("Company","Vocera Communications");
 kpsSys.putInt("Days To Keep Messages", 7);

 // Create a keyed property set for Default User
 properties
 KeyedPropertySet kpsDefUser = new
 KeyedPropertySet(myVai);
 kpsDefUser.putBoolean("Low Battery Alert", false);

 // Add Default User property set to the System property
 set
 kpsSys.putSet("Default User", kpsDefUser);

 // Update system properties
 myVai.updateSystemProperties(kpsSys);

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
 }

Controlling the Vocera Server
If you have an open VAI connection, you can stop and start a Vocera Server programmatically.
However, VAI cannot open a connection to a server that has been stopped. For example, if a
person has stopped the server by clicking the Stop button in the Vocera Control Panel, someone
must click the Start button to enable VAI to open a connection. Similarly, if VAI code stops the
server and then closes the connection, you will not be able to restart the server programmatically.

Note: Because you cannot connect to the server when it is stopped, you may want
to embed the open() call in a loop that repeatedly tries to open a connection until it
succeeds.

The VAI class implements the following methods for controlling a Vocera Server.

Table 9: Methods for controlling the Vocera Server

Method Description

startServer() Starts the Vocera Server, as if you had clicked the Run
button in the Vocera control panel.

stopServer() Stops the Vocera Server, as if you had clicked the Stop
button in the Vocera control panel.

restartServer() Shuts down the Vocera Server and all associated
services (simulating a fail-over), and then restarts them.
Calling restartServer() is not the same as calling
stopServer() and then calling startServer(). The
effects of calling restartServer() are more drastic.

MANAGING THE VOCERA SERVER

42 VOCERA ADMINISTRATION INTERFACE GUIDE

The following code example opens a connection to a Vocera Server, stops the server, and then
starts the server. This simple example is designed to demonstrate several VAI class methods.
In a production environment, when you really want to restart the server (as opposed to stopping
the server, doing something, and then starting the server), use the restartServer() method.
Moreover, rather than depending on timers, you should rely on VAIListener call-backs to track
changes to server states. See Monitoring the Vocera Server.

Stopping and starting the Vocera Server

public static void stopStartServer() {
 VaiDemo demo = new VaiDemo();
 try {
 myVai.open("10.0.1.2",
 "Administrator",
 "admin",
 demo.myL);

 myVai.stopServer();

 // Give the server time to shut down.
 Thread.sleep(20000); // 20 seconds

 myVai.startServer();

 // Give the server time to restart.
 Thread.sleep(20000); // 20 seconds

 myVai.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " +
 ve.getMessage());
 } catch (InterruptedException ie) { // For Thread.sleep
 System.out.println(ie.getMessage());
 }
 }

Managing the Vocera Database
The VAI class implements the following methods for managing a Vocera database.

Table 10: Methods for managing a Vocera database

Method Description

backup() Backs up the Vocera database, creating a new .zip file in
\vocera\backup.

restore(java.lang.String
sFileName)

Restores the Vocera database from a specified backup file
in the \vocera\backup directory.

emptyDatabase() Empties the Vocera database.

getBackupFileNames() Retrieves the names of backup files in the \vocera
\backup directory on the Vocera Server computer.

The following code example prints a list of backup files, prompts the user to enter a backup file
name, then uses the specified file to restore the Vocera database. Only the file name needs to be
specified, not the full path. The path is <Vocera_Drive>:\vocera\backup on the Vocera Server.

Restoring the Vocera database from a backup file

public static void promptAndRestore() {
 VaiDemo demo = new VaiDemo();
 try {
 myVai.open("qalab4",
 "Administrator",

MANAGING THE VOCERA SERVER

43 VOCERA ADMINISTRATION INTERFACE GUIDE

 "admin",
 demo.myL);

 // Retrieve the array of backup filenames
 String[] saBakFiles = myVai.getBackupFileNames();
 System.out.println("Backup Files:");
 for (int i = 0; i < saBakFiles.length; i++) {
 System.out.println(saBakFiles[i]);
 }
 System.out.println("Enter the name of a Backup File: ");

 java.io.BufferedReader in =
 new java.io.BufferedReader(
 new java.io.InputStreamReader(System.in)
);
 String sFileName = in.readLine();

 // Restore the backup file.
 // (Error checking omitted for simplicity.)
 myVai.restore(sFileName);

 // Close the connection
 myVai.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " + ve.getMessage());
 } catch (java.io.IOException ioe) { // For in.readLine
 System.out.println(ioe.getMessage());
 }
}

Monitoring the Vocera Server
The VAI.open() call takes a VAIListener object as an argument. This argument allows your
application to monitor server state changes. Simple applications may not need this information,
and can use a null value.

If you choose to monitor server state changes in your application, make sure you implement the
following methods defined in the VAIListener interface:

Table 11: Methods for monitoring the Vocera Server

Method Description

handleServerStateChange(int iState) Starting, stopping, and closing the VAI
connection to the server all trigger events
that your VAIListener implementation
can handle based on the current state of
the server. The iStatus parameter of the
handleServerStateChange() method
represents a server status code defined in
VAIListener.
Important: The VAIListener runs on an
internal call-back thread separate from the
VAI thread. Therefore, you cannot make
calls from VAIListener back to the VAI
instance. Otherwise, your program may hang.

handleReportStatus(java.lang.String
sTitle, int iStatus, java.lang.String
sStatus, int iPercentDone,
java.lang.String sError)

Handles status information reported as a result
of bulk operations, such as database backup
and restore operations.

The following code listing shows how a simple listener responds as the server is stopped and
restarted.

Using VAIListener to monitor the Vocera Server

MANAGING THE VOCERA SERVER

44 VOCERA ADMINISTRATION INTERFACE GUIDE

import vai.*;

public class VaiDemo {
 public static VAI myVai = new VAI();
 public static String sServerIP =
 "10.37.41.20,10.37.41.21";
 public static String sAdminUser = "Administrator";
 public static String sAdminPassword = "admin";

 private class MyVaiListener implements VAIListener {

 boolean bStopped = false;
 boolean bStarted = true;

 public void handleServerStateChange(int iState)
 System.out.println("Vocera Server state has changed:
 " +
 VAI.getServerStateString(iState));
 if (iState==VAIListener.ssStopped) {
 bStopped = true;
 bStarted = false;
 } else if (iState==VAIListener.ssStarted) {
 bStarted = true;
 bStopped = false;
 }
 }
 // handleReportStatus is defined in VAIListener
 // Note: iStatus is one of rs codes in VAIListener,
 // sError is empty unless iStatus == rsError.
 public void handleReportStatus(String sTitle,
 int iStatus,
 String sStatus,
 int iPercentDone,
 String sError)
 {
 System.out.println("Reporting a server status
 change.");
 System.out.println("[Report Title] \t" + sTitle);
 System.out.println("[Status Code] \t" + iStatus);
 System.out.println("[Status Msg] \t" + sStatus);
 System.out.println("[Percent Done] \t" +
 iPercentDone);
 System.out.println("[Error Msg] \t" + sError);
 System.out.println("End of status report.");
 }
 }

 public MyVaiListener myL;

 public VaiDemo() {
 myL = new MyVaiListener();
 }

 public static void main(String[] args) {
 VaiDemo demo = new VaiDemo();

 try {
 int iResultCode = demo.openConnection();
 if (iResultCode==0) {
 myVai.stopServer();
 while (!demo.myL.bStopped) {
 Thread.sleep(5000);
 }
 myVai.startServer();
 while (!demo.myL.bStarted) {
 Thread.sleep(5000);
 }
 demo.openConnection();
 }
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }

MANAGING THE VOCERA SERVER

45 VOCERA ADMINISTRATION INTERFACE GUIDE

 }

 private void openConnection() {
 int iResultCode = rcInitResult;
 try {
 System.out.println("Opening connection to server...");
 myVai.open(sServerIP,sAdminUser,sAdminPassword, myL);
 iResultCode = rcOK;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }
}

Vocera Server States
When you call the handleServerStateChange() method defined in the VAIListener interface,
you can specify how to handle each state change that occurs to the Vocera Server while your
application is running. For example, if you determine that the server is started, you can reopen the
connection to it.

Table 12: Vocera Server states

Server State Description

ssCancelStart Server start cancelled.

ssEmpty Empty operation in progress.

ssNotConnected No connection to server.

ssRestore Restore operation in progress.

ssStandby Server in cluster standby mode.

ssStarted Server process started.

ssStarting Server process starting.

ssStopped Server process stopped.

ssStopping Server process stopping.

46 VOCERA ADMINISTRATION INTERFACE GUIDE

Error Handling

VAI uses the Java exception mechanism to report runtime errors. When a method triggers a error,
the Java runtime framework creates an exception object that contains information about the error.
This process is called throwing an exception. To handle the error, an application must catch the
exception.

For example, the Address.create() method throws an exception when it triggers a runtime
error. Therefore, you must wrap the Address.create() call in a try...catch block, as shown
in the following code example.

Catching an exception

KeyedPropertySet kpsAddress = new KeyedPropertySet(myVai);
kpsAddress.putString("Last Name", "Jones");
try {
 Address a = Address.create(myVai, kpsAddress);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Using the VAIException Class
Most of the methods exposed in VAI classes throw a VAIException, defined in the class of that
name, in case of an error. An error may be thrown for many reasons, including among others:

• The VAI connection to the Vocera server was not open when the method was called.

• One or more method arguments are invalid.

• The entity on which the method was called has been deleted.

The VAIException class contains two methods to help you determine the reason for the error
and display it to the user of your application, if desired:

Table 13: Methods for returning information about exceptions

Method Description

getResultCode() Returns one of the integer constants defined in the
VAIException class. VAI error code values are all
greater than 0. Consequently, you can use a value of
0 as the result code for a successful operation. The
VAIException class defines integer constants such
as rcLicenseLimit to represent VAI error codes.
These constants are described in the Javadocs for the
VAIException class.

getMessage() Returns a locale-specific string containing an error
message.

The following code example shows how getMessage() and getResultCode() can provide
information when an error occurs.

ERROR HANDLING

47 VOCERA ADMINISTRATION INTERFACE GUIDE

Getting exception messages and result codes

// Initial result code value.
public final static int rcInitResult = -1;
// Result code for successful operation.
public final static int rcOK = 0;

public int open(String sHost, String sUserName, String
 sPassword) {
 int iResultCode = rcInitResult;
 try {
 myVai.open(sHost, sUserName, sPassword, null);
 iResultCode = rcOK;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 if (iResultCode == VAIException.rcLicenseLimit) {
 System.out.println(ve.getMessage());
 }
}

48 VOCERA ADMINISTRATION INTERFACE GUIDE

Security Features

This section describes VAI security features.

Controlling Access
VAI applications can use certificates to authenticate users with a Vocera Server. The VAI class
provides the following methods for working with certificates.

Table 14: Methods for working with certificates

Method Description

makeCertificateString(java.lang.String
sAdminLogin, java.lang.String
sAdminPassword, java.lang.String[]
saAppPasswords, boolean bUserIDPassword)

Creates a digital certificate, represented
as a String, to be passed to the
openWithCertificateString()
method. You can specify null instead of
an array of passwords when you create a
certificate string. A user can then log in to
the VAI application by providing his or her
Vocera password.

makeCertificateFile(java.lang.String
sFileName, java.lang.String sAdminLogin,
java.lang.String sAdminPassword,
java.lang.String[] saAppPasswords, boolean
bUserIDPassword)

Like makeCertificateString(),
but stores the certificate in a file with the
given fully-qualified name, to be passed to
the openWithCertificateFile()
method.
You can also use the mc.bat utility on
the Vocera Developer Kit CD to create
a certificate file. See Using the mc.bat
Utility.

makeAppCertificateFile(java.lang.String
sAppName, java.lang.String sFileName,
java.lang.String sAdminLogin,
java.lang.String sAdminPassword,
java.lang.String[] saAppPasswords, boolean
bUserIDPassword)

Like makeCertificateFile(),
but stores the certificate file with
the given application on the
Vocera Server, to be passed to the
openWithAppCertificateFile()
method.

openWithCertificateString(java.lang.String
sServerList, java.lang.String sLogin,
java.lang.String sPassword, java.lang.String
sCertificate, VAIListener l)

Opens the VAI interface object using an
application password and a certificate
represented as a String.

openWithCertificateFile(java.lang.String
sServerList, java.lang.String sLogin,
java.lang.String sPassword, java.lang.String
sFileName, VAIListener l)

Opens the VAI interface object using an
application password and a certificate file.

openWithAppCertificateFile(java.lang.String
sServerList, java.lang.String sLogin,
java.lang.String sPassword, java.lang.String
sAppName, java.lang.String sFileName,
VAIListener l)

Opens the VAI interface object using an
application password and a certificate
file stored with the given application on
the Vocera Server. This method is useful
for developing secure GUI applications
hosted on the Vocera Server that do not
require System Administrator permission
to log in.

SECURITY FEATURES

49 VOCERA ADMINISTRATION INTERFACE GUIDE

The VAI security mechanism supports application-specific passwords, so you can enable users to
log in to a VAI application without giving them a Vocera administrator user name and password.

The following code example combines several aspects of working with certificates and
application-specific passwords. In practice, you would probably perform the steps separately.

Using certificates with application passwords

public int openUsingCert1() {
 int iResultCode = -1;
 try {
 String[] saPass = { "green", "yellow", "purple" };
 String sCert =
 VAI.makeCertificateString("Administrator",
 "admin",
 saPass,
 false);
 myVai.openWithCertificateString("192.168.1.1",
 "mdavis",
 "yellow",
 sCert,
 myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Important: You should never hard-code passwords within an application. Always
provide a login user interface with which a user can supply a password.

You can also use certificates without specifying application passwords, as shown in the following
code example. This example is designed to show several related techniques at a glance. In a
production application, you would perform these steps separately.

Using certificates without application passwords

public int openUsingCert2() {
 int iResultCode = -1;
 try {
 String sCert = VAI.makeCertificateString("Administrator",
 "admin",
 null,
 true);
 myVai.openWithCertificateString("192.168.1.1",
 "mdavis",
 "sowhat",
 sCert,
 myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Using the mc.bat Utility
Vocera provides a batch file named mc.bat that you can use to encrypt login credentials and
create a certificate file. The batch file provides a simple command-line interface that prompts you
for the values needed to create a certificate.

SECURITY FEATURES

50 VOCERA ADMINISTRATION INTERFACE GUIDE

THIS PARAGRAPH WAS AFTER A TASK, IN DOCBOOK The following figure shows an
example of how the mc.bat utility was used to create a certificate file named certificate.txt.

Figure 5: Using mc.bat to create a certificate

To use the mc.bat utility to create a certificate file:
1. Copy the mc.bat file from the VAI\server directory on the Vocera Developer Kit CD into a

location on your Vocera server machine.

2. Run mc.bat.

The program opens a Command Prompt window, allowing you to enter several parameters
needed to create a certificate file.

3. Enter values for the filename, administrator login ID, administrator password, number of
application passwords, and each individual application password.

When you are finished, the utility creates a certificate file in the same directory.

VAI and Tiered Administrators
The Vocera Administration Console lets you grant users different levels of access to administrative
features, effectively distributing administration responsibility for the Vocera server to several
tiered administrators. Tiered administrators are Vocera users with some but not all administrative
privileges based on their membership in one or more groups. For more information about tiered
administrators, see the Vocera Administration Guide.

Unlike the Vocera Administration Console, VAI does not support tiered administrators. Anyone
who is able to log into a VAI application has access to whatever Vocera administrative features
that the application exposes. However, you can choose to expose only certain administrative
features in your VAI application, or you can restrict the application to only certain users.

Encrypted Passwords
You can use VAI to update passwords, but you cannot retrieve them. VAI uses strong public key
cryptography to protect passwords. Once encrypted, passwords are never decrypted anywhere
within VAI and within the Vocera Server code.

You should not hard-code credentials into your application. Prompt for them at the beginning of
each session.

SECURITY FEATURES

51 VOCERA ADMINISTRATION INTERFACE GUIDE

Authorizing VAI Applications
On the System > License Info tab of the Vocera Voice Server Administration Console, the Vocera
administrator may optionally enter a comma-separated list of IP addresses in the VAI Application
IP Addresses field to limit the list of computers which are allowed to establish VAI connections
to the Vocera Voice Server. If you leave this field blank, a VAI application from any machine is
allowed to connect to the Vocera Voice Server. Applications still need to authenticate to access
data on the Vocera Voice Server. For more information, see the Vocera Administration Guide.

A VAI application that is deployed directly on any node of a Vocera Voice Server cluster is
automatically authorized to connect; you do not have to add it explicitly to the VAI Application IP
Addresses field.

Best Practices for Multiuser Applications
A VAI application can be designed to support multiple simultaneous users. For example, you can
develop a Web application with a client interface that runs in a browser. For best performance,
your multiuser VAI application should follow these guidelines:

• Use a shared connection – To optimize performance and network I/O and to reduce the
multiuser stress on the server, you should design multiuser VAI applications to use only a
single, shared connection to the Vocera Server.

Important: The Vocera Server cannot handle many simultaneous VAI connections.
You should always test your multiuser application on a test server to see if it can
handle the load of multiple simultaneous users.

• Open the connection with a digital certificate – If your application is designed for
people without System Administration permission, use one of the VAI methods to create a
digital certificate to authenticate users logging into the application. When you open the VAI
connection, use one of the VAI methods to open a connection using the digital certificate.
See Controlling Access.

• Check login credentials – Implement methods to verify the credentials of each user logging
into the application. The VAI class provides several methods for verifying login credentials.

• Make your application thread-safe – To prevent thread interference and memory
consistency errors, synchronize access to shared resources.

A servlet is one example of a multiuser Web application. The following figure shows a servlet
running in Tomcat on the Vocera Server computer. Multiple users can connect to the servlet
using a browser.

Figure 6: Servlet example

Users can log into a multiuser VAI application using one of the following types of credentials:

• Administrator credentials – System Adminstrator credentials for the Vocera system. This
can be the Vocera user ID and password of a user with System Administrator permission, or
the "Administrator" ID and password.

• User credentials – Vocera user ID and password. The Vocera password can be a null
string (""). However, for security reasons your application should require a non-blank
password.

• Application credentials – VAI application credentials that satisfy an application certificate.

SECURITY FEATURES

52 VOCERA ADMINISTRATION INTERFACE GUIDE

The VAI class provides the following methods for checking whether login credentials are valid.

Table 15: Methods for working with certificates

Method Description

checkAdminCredentials(java.lang.String
sLogin, java.lang.String sPassword)

Returns true if the credentials are for a
valid Vocera System Administrator.

checkADAdminCredentials(java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sADConfigName)

Returns true if the Active Directory
credentials are for a valid Vocera System
Administrator.

checkUserCredentials(java.lang.String
sLogin, java.lang.String sPassword)

Returns true if the credentials are for a
valid Vocera user.

checkADUserCredentials(java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sADConfigName)

Returns true if the Active Directory
credentials are for a valid Vocera user.

checkAppCredentials(java.lang.String sLogin,
java.lang.String sPassword, java.lang.String
sAppName, java.lang.String sFileName)

Returns true if the credentials are valid
for the application certificate.

For more information about VAI methods for checking login credentials, see the VAI Javadoc
reference.

53 VOCERA ADMINISTRATION INTERFACE GUIDE

Property Reference

The following topics are a reference to the property keys and values of various VAI entities. All
property values can be updated except where specifically indicated.

• Address Properties

• Contact Properties

• Device Properties

• Group Properties

• Location Properties

• Site Properties

• User Properties

• System Properties

Address Properties
The following table lists the properties of an Address Book Entry. The Vocera address book is a
convenient way for badge users to contact places and people who are not badge users.

Since: 4.0

Table 16: Address properties

Key Description

Last Name The last name of a person or the name of a place.
Datatype: String
Maximum Length: 50 characters
Required: Yes

First Name The first name of a person. If the Address is a place rather
than a person, enter "" (an empty string).
Datatype: String
Maximum Length: 50 characters
Required: Yes

Alt Spoken Names Property set containing up to three variations of the spoken
name of the person or place.
Datatype: IndexedPropertySet
Required: No

Alt Spoken Names.* Represents each Alternate Spoken Name in the property set.
Datatype: String
Maximum Length: 50 characters
Required: No

Ident Phrase An identifying phrase that distinguishes a person or place
from another with the same name. Example: Rita Clark
in Staffing
Datatype: String
Maximum Length: 100 characters
Required: No

PROPERTY REFERENCE

54 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Email Address An optional email address, which allows users to send
voice messages as an email attachment. Example:
jdoe@vocera.com
Datatype: String
Maximum Length: 40 characters
Required: No

Desk Phone The desk phone number or extension for the person or
place.
Datatype: String
Maximum Length: 75 characters
Required: No

Pager Phone Pager number for the person or place.
Datatype: String
Maximum Length: 75 characters
Required: No

Site The home site for the person or place. If the entire
organization uses this address book entry, choose the
Global site. If you don't specify a site, the Global site is used.
Datatype: Site object, or a string representing the site's
internal name.
Required: No

Contact Properties
The following table lists the properties of a Contact. The Contact class represents an outside
buddy as a VAI entity.

Since: 4.0

Table 17: Contact properties

Key Description

Last Name An outside buddy's last name.
Datatype: String
Maximum Length: 50 characters
Required: Yes

First Name An outside buddy's first name.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Email Address An optional email address, which allows users to send
voice messages as an email attachment. Example:
jdoe@vocera.com
Datatype: String
Maximum Length: 60 characters
Required: No

Desk Phone The desk phone number or extension for the outside buddy.
Datatype: String
Maximum Length: 75 characters
Required: No

Pager Phone Pager number for the outside buddy.
Datatype: String
Maximum Length: 75 characters
Required: No

Owner The user for whom this is a personal contact (that is, the
owner of this outside buddy). Cannot be updated.
Datatype: User object

PROPERTY REFERENCE

55 VOCERA ADMINISTRATION INTERFACE GUIDE

Device Properties
The following table lists the properties of a Device. The Device class represents a device, such
as a badge, that connects to the Vocera system.

Since: 4.1

Table 18: Device properties

Key Description

MAC Address Specifies the unique MAC address of the device.
Datatype: String
Maximum Length: 12 characters
Required: Yes

Serial No The device serial number.
For B2000 badges, the serial number is 12 characters. For
B1000A badges, the serial number is 15 characters.
Datatype: String
Maximum Length: 15 characters
Required: No

Label The label applied to the device for identification purposes.
Datatype: String
Maximum Length: 20 characters
Required: No

Status The device status. The value you specify must match one of
the existing device status values.
Datatype: String
Maximum Length: 20 characters
Required: No

Tracking Time A time used to track the device. This time could be mapped
to any internal tracking event, such as the date when the
device was assigned to a user or sent for repair. The time
value is specified as the number of milliseconds since 1/1/70
00:00 GMT.
Datatype: long
Required: No

Owning Group The group that owns the device.
Datatype: Group object, or a string representing the group's
internal name.
Required: No

Notes Notes about the device. For example, you could include
more information about the device status.
Datatype: String
Maximum Length: 1000 characters
Required: No

Site The device's home site. If you don't specify a site, the Global
site is used.
Datatype: Site object, or a string representing the site's
internal name.
Required: No

Shared Indicates whether the device is shared by multiple users.
Datatype: boolean
Required: No

Group Properties
The following table lists the properties of a Group. Vocera groups organize users into roles such
as Floor Manager, Cashier, Nurse, Cardiologist, Executive, and so forth.

Since: 4.0

PROPERTY REFERENCE

56 VOCERA ADMINISTRATION INTERFACE GUIDE

Table 19: Group properties

Key Description

Group Type A string indicating the type of group. Enter Ordinary or
Department
Datatype: String
Required: No

Name The name of the group. The name must start with a letter or
digit. It must contain only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other characters are
allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name An optional alternate spoken name for the group. For
example, some people might say "the Sales team" instead
of "Sales." If you enter the Sales team as a spoken name,
the Genie will recognize "Call the sales team."
Datatype: String
Maximum Length: 50 characters
Required: No

Spoken Member Name Enter a name that describes a member of the group. For
example, in the group called Sales, a group member would
be known as a sales person. This would allow the Genie
to recognize a command such as, "Call a sales person."
Datatype: String
Maximum Length: 50 characters
Required: No

Spoken Members Name Optional plural name that collectively describes the
members of the group. For example, in the group called
Sales, the collection of group members could be called
sales people. This would allow the Genie to recognize a
command such as, "Send a message to all sales people."
Datatype: String
Maximum Length: 50 characters
Required: No

Phone Phone number or extension.
If the telephony integration option is installed, outside callers
who dial the Vocera hunt number can connect to the group
by entering the group extension at the Genie prompt, instead
of saying the group name.
Datatype: String
Maximum Length: 75 characters
Required: No

Pager Pager number for the group.
You can configure Vocera to forward a group's calls to this
specified pager.
Datatype: String
Maximum Length: 75 characters
Required: No
Since: 4.1

Scheduling Type Specify a scheduling option to indicate how calls to the
group should be distributed. Enter Sequential or Round
Robin.
Choose Sequential if you want one person to be the main
contact. The second member in the group list is called only if
the first person is not available, a third member is called only
if the first two are unavailable, and so forth.
Choose Round Robin if you want calls to be distributed
as evenly as possible among group members. When you
choose round robin, Vocera iterates through members in the
group until someone accepts the call; however, the person
who most recently accepted a group call is tried last.
Datatype: String
Required: No

PROPERTY REFERENCE

57 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

PIN Specify a value of the PIN for long distance calls. A telephony
PIN authorizes members of a Vocera department to
make phone calls and allows an organization to charge
departments for those calls. A PIN can include digits, special
characters, and PIN macros.
Enter a PIN value only if you are working with a department
group.
Datatype: String
Maximum Length: 50 characters
Required: No

Cost Center The department's Cost Center ID, which enables Vocera to
track system usage by department and potentially allows an
organization to charge its departments for relative usage.
Enter a Cost Center value only if you are working with a
department group.
Datatype: String
Maximum Length: 50 characters
Required: No

Auto Remove Specifies whether membership in the group is temporary.
If true, Vocera automatically removes users from the
group when they log out, but leaves the rest of the user
profile in the database. Users are not added into the group
automatically when they log back in.
Datatype: boolean
Required: No

Off Site Calls Specifies whether calls to members of the group can be
received at sites other than the group's home site.
This property behaves the same for all groups, including
groups assigned to the Global site. If your Vocera system
has only one site, this property does not apply.
Datatype: boolean
Required: No
Since: 4.2

Off Site Broadcasts Specifies whether broadcasts to members of the group can
be received at sites other than the group's home site.
This property behaves the same for all groups, including
groups assigned to the Global site. If your Vocera system
has only one site, this property does not apply.
Datatype: boolean
Required: No
Since: 4.2

No Call Specifies whether the group is used to grant or revoke
permissions only and should not be callable. If true, calling
and broadcasting to this group is disabled.
Datatype: boolean
Required: No
Since: 4.2

Site The group's home site.
If your organization has multiple sites connected to the same
Vocera server, specify the home site that represents the
member's physical location. If the group's membership
spans multiple sites, specify the Global site.
Datatype: Site object
Required: No

PROPERTY REFERENCE

58 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Forwarding Specify a forwarding option to indicate whether calls should
be forwarded, and, if so, where to forward them. Enter None,
Phone, Pager or User.

• None means that if a call to the group is not answered,
the caller is prompted to leave a message, and that
message is delivered to all members of the group.

• Phone transfers the unanswered call to the number that
you enter for the Forwarding Number property. This
feature requires the telephony integration option.

• Pager transfers the unanswered call to the number
that you enter for the Pager property. If the value for
the Pager property is empty, this option is invalid. This
feature requires the telephony integration option.

• User transfers the call to a particular badge user, group,
or address book entry when no members of the original
group can take the call.

Datatype: String
Required: No

Forwarding Number Phone number used when Forwarding = Phone
Datatype: String
Required: No

Forwarding Name The User, Address, or Group to forward to when Forwarding
= User
Datatype: Entity
Required: No

Forwarding When Specify which calls to forward. Enter All to forward all calls,
or Unanswered to forward only unanswered calls.
Datatype: String
Required: No

Manager Group The group of users permitted to manage this group. Specify
a group that has management privileges.
Datatype: Group
Required: No

Member Domain Group The group of users permitted to add themselves to this
group.
Datatype: Group
Required: No

Device Manager Group The group of users permitted to manage the devices for this
group.
Datatype: Group
Required: No
Since: 4.1

Permissions Permissions granted to members of this group. For the
properties in this set, a value of true explicitly grants that
permission for the group.
Datatype: KeyedPropertySet
Required: No

Permissions.Perform System Administration Sets whether to grant permission to perform system
administration, which gives a group full administrative
privileges in the Administration Console, and automatically
grants those group members every other permission.
This permission overrides any revoked permissions inherited
by membership in other groups, except the revoked Perform
Server Administration permission itself.
Datatype: boolean
Required: No

PROPERTY REFERENCE

59 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Permissions.Record Name Prompts for
Another User

Sets whether to grant permission to record name prompts
for other users, as well as groups and address book entries.
Name prompts improve the usability of the Vocera system;
the Genie plays these name prompts when necessary,
instead of synthesizing speech.
Datatype: boolean
Required: No

Permissions.Log In as Another User Sets whether to grant permission to log in as someone else,
ignoring any voiceprint authentication. This permission is
useful when an administrator needs to log in as another user
for whom voiceprint authentication has been enabled.
Datatype: boolean
Required: No

Permissions.Call Internal Numbers Sets whether to grant permission to place calls to internal
telephone extensions by saying the key phrase "Dial
extension" (for example, "Dial extension 4085"). This feature
requires Telephony Integration.
Datatype: boolean
Required: No

Permissions.Call Toll-Free Numbers Sets whether to grant permission to place calls to phone
numbers in toll-free calling areas. This feature requires
Telephony Integration.
Datatype: boolean
Required: No

Permissions.Call Toll Numbers Sets whether to grant permission to place calls to phone
numbers that are not in toll-free calling areas. This feature
requires Telephony Integration.
Datatype: boolean
Required: No

Permissions.Forward Calls to Badges Sets whether to grant permission to forward incoming calls
to other badges. When this permission is granted, users can
specify forwarding options through either the User Console
or voice commands.
Datatype: boolean
Required: No

Permissions.Forward Calls to Internal
Numbers

Sets whether to grant permission to forward incoming calls
to internal phone numbers. This feature requires Telephony
Integration. When this permission is granted, users can
specify forwarding options through either the User Console
or voice commands.
Datatype: boolean
Required: No

Permissions.Forward Calls to Toll-Free
Numbers

Sets whether to grant permission to forward incoming calls
to phone numbers in toll-free calling areas. This feature
requires Telephony Integration. When this permission is
granted, users can specify forwarding options through either
the User Console or voice commands.
Datatype: boolean
Required: No

Permissions.Forward Calls to Toll Numbers Sets whether to grant permission to forward incoming calls
to phone numbers that are not in toll-free calling areas. This
feature requires Telephony Integration. When this permission
is granted, users can specify forwarding options through
either the User Console or voice commands.
Datatype: boolean
Required: No

Permissions.Initiate Broadcasts Sets whether to grant permission to broadcast to all users in
a group at the same time.
Datatype: boolean
Required: No

Permissions.Initiate Broadcasts to Everyone Sets whether to grant permission to broadcast to all users in
the Everyone group for your site.
Datatype: boolean
Required: No

PROPERTY REFERENCE

60 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Permissions.Initiate Urgent Broadcasts Sets whether to grant permission to broadcast an urgent call
to every member in a group at the same time.
An urgent broadcast has priority and breaks through to
everyone’s badge, even if the badge is blocking calls or is in
DND mode. See the Vocera User Guide for more information
about urgent broadcasts.
Datatype: boolean
Required: No

Permissions.Place Urgent Calls Sets whether to grant permission to place an urgent call or
initiate an urgent three-way conference call.
An urgent call or urgent three-way conference call has
priority and breaks through to a badge, even if the badge
is blocking calls or is in DND mode. See the Vocera User
Guide for more information about urgent calls.
Datatype: boolean
Required: No

Permissions.Call Users at Other Sites Sets whether to grant permission to contact a user whose
home site or current site is different from the home site or
current site of the caller.
Datatype: boolean
Required: No

Permissions.Join Conference Sets whether to grant permission to enter or leave a
conference.
Vocera does not require users to have a permission to use
a conference; that is, any user who is in a conference has
access to the conference feature.
Datatype: boolean
Required: No

Permissions.Send Messages To Everyone Sets whether to grant permission to send a message to all
users in the Everyone group for your site.
Datatype: boolean
Required: No

Permissions.Have Toll-Free Pager Number Sets whether to grant permission to have a pager number
that is in a toll-free calling area. This feature requires
Telephony Integration.
Vocera does not require users to have permission to
call pagers. If you allow users the permission to have
pager numbers, you are implicitly allowing other users the
permission to call those numbers.
Datatype: boolean
Required: No

Permissions.Have Toll Pager Number Sets whether to grant permission to have a pager number
that is in a toll calling area. This feature requires Telephony
Integration.
Vocera does not require users to have permission to
call pagers. If you allow users the permission to have
pager numbers, you are implicitly allowing other users the
permission to call those numbers.
Datatype: boolean
Required: No

Permissions.Require Authentication to Log In Sets whether group members must recite a series of random
digits when they log in. If the voice does not match the
recorded voiceprint, users cannot log in.
This permission has no effect until a user records a
voiceprint. Also, this permission is effective only if the Voice
Prints Enabled system property is set to true.
Datatype: boolean
Required: No

PROPERTY REFERENCE

61 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Permissions.Require Authentication to Play
Messages

Sets whether group members must recite a series of random
digits when they play messages. If the voice does not match
the recorded voiceprint, users cannot play messages.
This permission has no effect until a user records a
voiceprint. Also, this permission is effective only if the Voice
Prints Enabled system property is set to true.
Datatype: boolean
Required: No

Permissions.Record your Voiceprint Sets whether to grant permission to record their voiceprint.
This permission is effective only if the Voice Prints Enabled
system property is set to true.
Datatype: boolean
Required: No

Permissions.Erase your Voiceprint Sets whether to grant permission to erase their previously-
recorded voiceprints. This permission is effective only if the
Voice Prints Enabled system property is set to true.
Datatype: boolean
Required: No

Permissions.Erase Voiceprint of Another
User

Sets whether to grant permission to erase the voiceprint of
another user. This permission is effective only if the Voice
Prints Enabled system property is set to true.
Datatype: boolean
Required: No

Permissions.Locate Users or Group
Members

Sets whether to grant permission to locate other users or
group members. You can then issue badge commands
such as "Where is Melissa Schaefer?" to find the physical
location of a user or group member. This feature is useful
only if location names have been defined and access points
have been assigned to locations.
Datatype: boolean
Required: No

Permissions.Have VIP Status Sets whether to grant permission to complete a call even
when users are blocking calls or have placed their badges in
Do Not Disturb mode.
Datatype: boolean
Required: No

Permissions.Block and Accept Calls Sets whether to grant permission to issue the Block and
Accept voice commands to perform selective call screening.
Beginning users who are granted this permission may
unintentionally block calls when all they need is temporary
use of the DND button. You should enable these commands
for advanced users only.
This permission does not affect the ability to block calls
through the User Console.
Datatype: boolean
Required: No

Permissions.Record Utterances Sets whether to grant permission to record utterances during
Genie interactions. Use this permission for troubleshooting
speech recognition problems.
Datatype: boolean
Required: No

Permissions.Monitor Users from
Administration Console

Sets whether to grant permission to view information
about logged-in group members and their badges in the
Administration Console. This VAI permission is equivalent to
the View Users And Groups permission in the Administration
Console.
Datatype: boolean
Required: No

Permissions.Add/Edit/Delete Users Sets whether to grant permission to maintain the Vocera
database by adding, editing, and deleting all features in
a user profile, such as alternate spoken names, group
membership, and so forth.
Datatype: boolean
Required: No

PROPERTY REFERENCE

62 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Permissions.Add/Edit/Delete Temporary
Users

Sets whether to grant permission to maintain the Vocera
database by adding, editing, and deleting all features of the
profiles of temporary users.
Datatype: boolean
Required: No

Permissions.Edit Users Sets whether to grant permission to maintain the Vocera
database by editing existing user profiles.
Datatype: boolean
Required: No

Permissions.Add/Edit/Delete Address Book
Entries

Sets whether to grant permission to maintain the Vocera
database by adding, editing, and deleting address book
entries. Also grants permission to record a spoken name for
address book entries.
Datatype: boolean
Required: No

Permissions.Access Genie from Phone Using
Caller ID

Sets whether to grant permission to call the Vocera hunt
number from a phone and access the Genie using a caller
ID associated with the phone. The caller's ID is matched
against a user's phone number in the Vocera database.
Datatype: boolean
Required: No
Since: 4.1

Permissions.Perform System Device
Management

Sets whether to grant permission to add, edit, and delete
devices and view the Status Monitor.
Datatype: boolean
Required: No
Since: 4.1

AntiPermissions For the properties in this set, a value of true explicitly
revokes that permission for the group even if members
belong to another group that grants the permission.
Datatype: KeyedPropertySet
Required: No

AntiPermissions.Perform System
Administration

Sets whether to revoke permission to perform system
administration. When this permission is revoked, the
group no longer has full administrative privileges in the
Administration Console, and members are no longer granted
every other permission.
Datatype: boolean
Required: No

AntiPermissions.Record Name Prompts for
Another User

Sets whether to revoke permission to record name prompts
for other users, as well as groups and address book entries.
Datatype: boolean
Required: No

AntiPermissions.Log In as Another User Sets whether to revoke permission to log in as someone
else, ignoring any voiceprint authentication.
Datatype: boolean
Required: No

AntiPermissions.Call Internal Numbers Sets whether to revoke permission to place calls to internal
telephone extensions by saying the key phrase "Dial
extension" (for example, "Dial extension 4085"). This feature
requires Telephony Integration.
Datatype: boolean
Required: No

AntiPermissions.Call Toll-Free Numbers Sets whether to revoke permission to place calls to phone
numbers in toll-free calling areas. This feature requires
Telephony Integration.
Datatype: boolean
Required: No

PROPERTY REFERENCE

63 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

AntiPermissions.Call Toll Numbers Sets whether to revoke permission to place calls to phone
numbers that are not in toll-free calling areas. This feature
requires Telephony Integration.
Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Badges Sets whether to revoke permission to forward incoming calls
to other badges.
Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Internal
Numbers

Sets whether to revoke permission to forward incoming calls
to internal phone numbers. This feature requires Telephony
Integration.
Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Toll-Free
Numbers

Sets whether to revoke permission to forward incoming
calls to phone numbers in toll-free calling areas. This feature
requires Telephony Integration.
Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Toll
Numbers

Sets whether to revoke permission to forward incoming calls
to phone numbers that are not in toll-free calling areas. This
feature requires Telephony Integration.
Datatype: boolean
Required: No

AntiPermissions.Initiate Broadcasts Sets whether to revoke permission to broadcast to all users
in a group at the same time.
Datatype: boolean
Required: No

AntiPermissions.Initiate Broadcasts to
Everyone

Sets whether to revoke permission to broadcast to all users
in the Everyone group for your site.
Datatype: boolean
Required: No

AntiPermissions.Initiate Urgent Broadcasts Sets whether to revoke permission to broadcast an urgent
call to every member in a group at the same time.
Datatype: boolean
Required: No

AntiPermissions.Place Urgent Calls Sets whether to revoke permission to place an urgent call or
initiate an urgent three-way conference call.
Datatype: boolean
Required: No

AntiPermissions.Call Users at Other Sites Sets whether to revoke permission to contact a user whose
home site or current site is different from the home site or
current site of the caller.
Datatype: boolean
Required: No

AntiPermissions.Join Conference Sets whether to revoke permission to enter or leave a
conference.
To prevent a user from conferencing, revoke the Join
Conference permission and use the Administration Console
to remove the user from a conference.
Datatype: boolean
Required: No

AntiPermissions.Send Messages To
Everyone

Sets whether to revoke permission to send a message to all
users in the Everyone group for your site.
Datatype: boolean
Required: No

AntiPermissions.Have Toll-Free Pager
Number

Sets whether to revoke permission to have a pager number
that is in a toll-free calling area. This feature requires
Telephony Integration.
Datatype: boolean
Required: No

PROPERTY REFERENCE

64 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

AntiPermissions.Have Toll Pager Number Sets whether to revoke permission to have a pager number
that is in a toll calling area. This feature requires Telephony
Integration.
Datatype: boolean
Required: No

AntiPermissions.Require Authentication to
Log In

Sets whether to revoke permission that would require group
members to recite a series of random digits when they log in.
If true, members can log in without authentication.
Datatype: boolean
Required: No

AntiPermissions.Require Authentication to
Play Messages

Sets whether to revoke permission that would require group
members to recite a series of random digits when they
play messages. If the voice does not match the recorded
voiceprint, users cannot play messages. If true, members
can play messages without authentication.
Datatype: boolean
Required: No

AntiPermissions.Record your Voiceprint Sets whether to revoke permission for group members to
record their voiceprint. This permission is effective only if the
Voice Prints Enabled system property is set to true.
Datatype: boolean
Required: No

AntiPermissions.Erase your Voiceprint Sets whether to revoke permission for group members to
erase their previously-recorded voiceprints. This permission
is effective only if the Voice Prints Enabled system property is
set to true.
Datatype: boolean
Required: No

AntiPermissions.Erase Voiceprint of Another
User

Sets whether to revoke permission to erase the voiceprint
of another user. This permission is effective only if the Voice
Prints Enabled system property is set to true.
Datatype: boolean
Required: No

AntiPermissions.Locate Users or Group
Members

Sets whether to revoke permission to locate other users or
group members. This feature is useful only if location names
have been defined and access points have been assigned to
locations.
Datatype: boolean
Required: No

AntiPermissions.Have VIP Status Sets whether to revoke permission to complete a call even
when users are blocking calls or have placed their badges in
Do Not Disturb mode.
Datatype: boolean
Required: No

AntiPermissions.Block and Accept Calls Sets whether to revoke permission to issue the Block and
Accept voice commands to perform selective call screening.
This permission does not affect the ability to block calls
through the User Console.
Datatype: boolean
Required: No

AntiPermissions.Record Utterances Sets whether to revoke permission to record utterances
during Genie interactions.
Datatype: boolean
Required: No

AntiPermissions.Monitor Users from
Administration Console

Sets whether to revoke the permission to view information
about logged-in group members and their badges in the
Administration Console. This VAI permission is equivalent to
the View Users And Groups permission in the Administration
Console.
Datatype: boolean
Required: No

PROPERTY REFERENCE

65 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

AntiPermissions.Add/Edit/Delete Users Sets whether to revoke permission to maintain the Vocera
database by adding, editing, and deleting all features in
a user profile, such as alternate spoken names, group
membership, and so forth.
Datatype: boolean
Required: No

AntiPermissions.Add/Edit/Delete Temporary
Users

Sets whether to revoke permission to maintain the Vocera
database by adding, editing, and deleting all features of the
profiles of temporary users.
Datatype: boolean
Required: No

AntiPermissions.Edit Users Sets whether to revoke permission to maintain the Vocera
database by editing existing user profiles.
Datatype: boolean
Required: No

AntiPermissions.Add/Edit/Delete Address
Book Entries

Sets whether to revoke permission to maintain the Vocera
database by adding, editing, and deleting address book
entries. Also revokes permission to record a spoken name
for address book entries.
Datatype: boolean
Required: No

AntiPermissions.Access Genie from Phone
Using Caller ID

Sets whether to revoke permission to call the Vocera hunt
number from a phone and access the Genie using a caller ID
associated with the phone.
Datatype: boolean
Required: No
Since: 4.1

AntiPermissions.Perform System Device
Management

Sets whether to revoke permission to add, edit, and delete
devices and view the Status Monitor.
Datatype: boolean
Required: No
Since: 4.1

Location Properties
The following table lists the properties of a Location. Locations are names of places to which you
assign one or more access points.

Since: 4.0

Table 20: Location properties

Key Description

Name Location name. The name must start with a letter or digit.
It must contain only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other characters are
allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name Alternate spoken name for the location, if needed. The
alternate spoken name gives the server an additional field to
check, increasing the chances that a location name will be
understood by the Genie.
Datatype: String
Maximum Length: 50 characters
Required: No

Description Description of the location. Example: H Q Lobby
Datatype: String
Maximum Length: 100 characters
Required: No

PROPERTY REFERENCE

66 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Site Physical site of the access point.
If your organization has multiple sites connected to the same
Vocera server, specify the site that represents the access
point's physical location. If your organization does not have
multiple sites, accept the default Global site.
Datatype: Site object, or a string representing the site's
internal name
Required: No

Access Points Property set containing access points associated with the
location.
Datatype: IndexedPropertySet
Required: No

Access Points.* Represents each access point assigned to the location.
To enter an access point, type its MAC address (12
hexadecimal characters).
Datatype: String
Maximum Length: 12 characters
Required: No

Neighbors Property set containing neighboring locations.
Datatype: IndexedPropertySet
Required: No

Neighbors.* Represents each neighboring location.
Datatype: Location object, or the internal name of the
location of a neighboring access point
Required: No

Site Properties
The following table lists the properties of a Site. In Vocera, a site is a distinct physical location that
shares a centralized Vocera server with one or more other physical locations.

Since: 4.0

Table 21: Site properties

Key Description

Name Name of the site. The name must start with a letter or digit.
It must contain only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other characters are
allowed.
Note: If you change the name of a site that has a Telephony
server associated with it, you must set the value of the
VOCERA_SITE environment variable on the Telephony server
machine to the name of the new site.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name Alternate spoken name of the site. For example, if users
commonly refer to a site by a nickname or an acronym, enter
that variation here.
Datatype: String
Maximum Length: 50 characters
Required: No

Description Description of the site. Example: Intensive Care Unit
Datatype: String
Maximum Length: 100 characters
Required: No

PROPERTY REFERENCE

67 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Cost Center The site's cost center ID, which enables Vocera to track
system usage by site and potentially allows an organization
to charge sites for relative usage.
Datatype: String
Maximum Length: 100 characters
Required: No

Time Zone The site's time zone. Enter a Windows Time Zone string
(such as "Etc/GMT+8", "America/Los_Angeles", and
"PST8PDT"), or "" (empty string) to use the time zone of the
Vocera server.
Datatype: String
Required: No

Panic Group The group that receives emergency broadcasts for this site.
Datatype: Group
Required: No
Since: 4.3

Inhibit Panic Chime If true, emergency broadcasts are started without an
opening chime.
Datatype: boolean
Required: No
Since: 4.3

Telephony Info Property set containing telephony information for this site.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Telephony Enabled If true, telephony features are enabled for the site.
Datatype: boolean
Required: No

Telephony Info.Telephony Interface Type Type of telephony interface. Enter IP, Digital, or Analog.
Datatype: String
Required: No

Telephony Info.Telephony # of Lines Number of telephone lines.
Datatype: int
Required: Yes (if telephony is enabled for the site)

Telephony Info.Telephony Protocol Signaling protocol that your PBX uses at the network layer.
For IP PBX integration, enter the following value: SIP
Version 2.0.
For Digital PBX integration, enter one of the following values:
ISDN PRI, EURO ISDN PRI, or Wink Start.
DO NOT update this property if Telephony Interface Type =
Analog.
Datatype: String
Required: No

Telephony Info.Telephony ISDN Protocol ISDN protocol used by your PBX. Enter one of the following
values: NI2, DMS, 5ESS, 4ESS, NT1, CTR4, QTE, NE1, or QNT.
Datatype: String
Required: No

Telephony Info.Telephony Framing Framing that your PBX uses at the physical layer. Enter one
of the following values: ESF, D4, or CEPT1.
Update this property only if Telephony Interface Type =
Digital.
Datatype: String
Required: No

Telephony Info.Telephony Line Code Line code that your PBX uses at the physical layer. Enter one
of the following values: B8ZS, AMI, or HDB3.
Update this property only if Telephony Interface Type =
Digital.
Datatype: String
Required: No

PROPERTY REFERENCE

68 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Area Code Area code of the region in which the Vocera server is
installed.
Datatype: String
Maximum Length: 10 characters
Required: Yes (if telephony is enabled for the site)

Telephony Info.Local Access Sequence of numbers you use to get an outside line. For
example, a PBX might require you to dial a 0 or a 9 or an 8
to get an outside line.
By default, Vocera prepends this access code to any
number within the local area code.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Long Distance Access Sequence of numbers you enter before placing a long
distance call. For example, a PBX system might require you
to dial a 9 to get an outside line and then dial a 1 before a
long-distance telephone number. In this situation, enter 91.
By default, Vocera prepends this access code to any
number that includes an area code that is not the local area
code.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.System Phone Number Area code and phone number of the DID line or hunt group
you set up for the Vocera system. To use this number with
numeric pagers, enter an asterisk after the last digit of the
phone number.
Datatype: String
Maximum Length: 75 characters
Required: No

Telephony Info.Direct Access Phone Number Area code and phone number of the DID line you set up for
specially licensed user access to the Vocera system. If you
have not obtained Vocera Access Anywhere user licenses
or you are not using ISDN or SIP signaling protocol, this
property should not be updated.
Datatype: String
Maximum Length: 75 characters
Required: No
Since: 4.1

Telephony Info.Voice Mail Access Sequence of numbers you enter to access the company's
voice mail system.
A typical entry includes X, then the sequence of digits that
you dial to get into the voicemail system from an internal
phone, and possibly special dialing characters such as the *
or # to indicate the end of the sequence.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Seven Digit Dialing If true, the area code is omitted from the dialing sequence
for a local call.
Datatype: boolean
Required: No

Telephony Info.PIN Setup Template for adding a PIN to a dialing sequence for long
distance calls. A PIN template can include digits, special
characters, and PIN macros.
Datatype: String
Maximum Length: 75 characters
Required: No

PROPERTY REFERENCE

69 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Default PIN The default PIN for long distance calls for the site.
If a telephony PIN is not specified in the user's profile and the
user does not belong to a department group that has a PIN,
then the site PIN is used.
Datatype: String
Maximum Length: 75 characters
Required: No

Telephony Info.Telephony Extension Length Specify the number of digits in an extension, or 0 (zero) to
allow variable length extensions.
Datatype: int
Required: No

Telephony Info.Access Code Info By default, numbers in the local area code use the Default
Local Access Code and all others use the Default Long-
Distance Access Code. This property set contains telephone
numbers that are exceptions to the access code policy.
Each member of the indexed set is itself a property set.
Datatype: IndexedPropertySet
Required: No

Telephony Info.Access Code Info.* Represents each defined access code exception in the
property set.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Access Code Info.*.Number
Range

KeyedPropertySet that defines the number range for an
access code exception.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Access Code Info.*.Number
Range.Area Code

Area code for which the exception is defined.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Access Code Info.*.Number
Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Telephony Info.Access Code Info.*.Number
Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Access Code Info.*.Number
Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Access Code Info.*.Number
Range.To

End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Access Code Info.*.Access
Code

Access code that the specified area code requires.
Datatype: String
Maximum Length: 10 characters
Required: Yes (for each access code exception)

Telephony Info.Toll Info By default, numbers in the local area code are considered
toll-free, and others are considered to require toll-call
permissions. This property set contains telephone numbers
that are exceptions to the toll-call policy.
Datatype: IndexedPropertySet
Required: No

PROPERTY REFERENCE

70 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Toll Info.* Represents each defined toll info exception. Each keyed
set specifies an area code and phone numbers that can be
called even by users who do not have toll-call permissions
granted.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Toll Info.*.Number Range Property set that defines the number range for a toll info
exception.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Toll Info.*.Number
Range.Area Code

Area code for which the exception is defined.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Toll Info.*.Number
Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Telephony Info.Toll Info.*.Number
Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Toll Info.*.Number
Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Toll Info.*.Number Range.To End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Toll Info.*.Toll Free If true, the area code is toll free.
Datatype: boolean
Required: No

Telephony Info.Paging Info Specifies properties for interacting with pagers.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Paging Info.Pager Number
Length

Specify the number of digits in a pager number, or 0 (zero) to
allow variable length numbers.
Datatype: int
Required: No

Telephony Info.Paging Info.Outside Page
Setup

Template that determines how Vocera formats the string
passed to a pager outside the Vocera system. The default
value of this property is %N;%V%D. For more information,
see the Vocera Telephony Configuration Guide.
Datatype: String
Required: No

Telephony Info.Paging Info.Inside Page
Setup

Template that determines how Vocera formats the string
passed to a pager inside the Vocera system. The default
value of this property is %N;%V%D. For more information,
see the Vocera Telephony Configuration Guide.
Datatype: String
Required: No

Telephony Info.Paging Info.Outside Page
Setup for DialIn

Template that determines how Vocera formats the string
passed to an outside pager by a person calling into the
Vocera hunt group or DID number. The default value of this
property is %N;%X. For more information, see the Vocera
Telephony Configuration Guide.
Datatype: String
Required: No

PROPERTY REFERENCE

71 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Paging Info.Inside Page
Setup for DialIn

Template that determines how Vocera formats the string
passed to an inside pager by a person calling into the Vocera
hunt group or DID number. The default value of this property
is %N;%X. For more information, see the Vocera Telephony
Configuration Guide.
Datatype: String
Required: No

Telephony Info.DID Info Property set containing direct inward dialing (DID)
information.
Datatype: IndexedPropertySet
Required: No

Telephony Info.DID Info.* Represents each defined range of direct inward dialing (DID)
numbers. Each keyed set specifies a prefix and the range of
phone numbers to use for direct inward dialing.
Datatype: KeyedPropertySet
Required: No

Telephony Info.DID Info.*.Number Range Property set that defines a number range to use for direct
inward dialing.
Datatype: KeyedPropertySet
Required: No

Telephony Info.DID Info.*.Number
Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Telephony Info.DID Info.*.Number
Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.DID Info.*.Number
Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.DID Info.*.Number Range.To End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.DID Info.*.Prefix Area code and prefix assigned to the range. For example,
if the local area code of the PBX is 408, and the corporate
prefix for all extensions is 790, you typically enter
(408)-790. In some situations, your PBX administrator may
assign a different prefix for you to use.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Telephony Info.Dynamic Phone Info Property set that specifies a range of dynamic phone
extensions. This allows you to configure Vocera to supply
telephone extensions on demand to users who need them.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Dynamic Phone Info.Enabled If true, dynamic extensions are enabled.
Datatype: boolean
Required: No

Telephony Info.Dynamic Phone Info.First Specifies the first dynamic extension in the range.
Datatype: String
Maximum Length: 7 characters
Required: No

PROPERTY REFERENCE

72 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Dynamic Phone Info.Last Specifies the last dynamic extension in the range. The Last
value must be greater than the First value.
Datatype: String
Maximum Length: 7 characters
Required: No

Telephony Info.Dynamic Phone Info.Lifetime Specifies the lifetime, in days or hours, of the assignment of
dynamic extensions. Enter 0 (zero) to make the extensions
permanent.
Datatype: int
Required: No

Telephony Info.Dynamic Phone Info.Hours Specifies whether the lifetime of dynamic extensions is
measured in hours (true) or days (false).
Datatype: boolean
Required: No
Since: 4.1

Telephony Info.Dynamic Phone Info.Last
Allocated

The last allocated dynamic extension. Cannot be updated.
Datatype: String

Telephony Info.Shared Server Info Property set that contains information needed to allow
multiple sites to share a Telephony server.
Datatype: IndexedPropertySet
Required: No

Telephony Info.Shared Server Info.* Represents each defined site that shares this Telephony
server. Each keyed set specifies the site, hunt group
number, and reserved range of lines for incoming calls.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Shared Server Info.*.Site Principal site for which Telephony is enabled.
Datatype: Site object, or a string representing the site's
internal name.
Required: No

Telephony Info.Shared Server Info.*.System
Phone Number

Area code and phone number of the DID line or hunt group
you set up for the Vocera system.
Datatype: String
Maximum Length: 75 characters

Telephony Info.Shared Server Info.*.First
Reserved Line No

First of the reserved lines for incoming calls.
Datatype: String

Telephony Info.Shared Server
Info.*.Reserved Line Count

Number of reserved lines for incoming calls.
Datatype: int

Telephony Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls through the tie line
to the selected site that is sharing the principal's telephony
server. Alternatively, this field could also be used to specify a
prefix for Direct Inward Dialing (DID) numbers at the selected
site.
Datatype: String
Since: 4.1

Telephony Info.Call Signaling Address The IP address of your IP PBX or VoIP gateway. By default,
port 5060 is used. If you need to change the port, enter the
call signaling address in the form IP_Address:Port.
Datatype: String
Maximum Length: 75 characters
Since: 4.3

Telephony Info.Cisco Info Property set containing default Cisco integration properties.
Datatype: KeyedPropertySet
Required: No
Since: 4.3

Telephony Info.Cisco Info.Enabled Datatype: boolen
Required: No
Since: 4.3

PROPERTY REFERENCE

73 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Telephony Info.Cisco Info.Extension Mobility
Enabled

Datatype: boolean
Required: No
Since: 4.3

Telephony Info.Cisco Info.Phone The voice access number for CUCM. This number should
match the route pattern/number for the Vocera SIP trunk.
You can find route patterns in CUCM Console by choosing
Call Routing > Route/Hunt > Route Pattern.
Datatype: String
Maximum Length: 75 characters
Required: No
Since: 4.3

Telephony Info.Cisco Info.First Line The first phone line used for the internal range of Vocera
lines.
Datatype: String
Maximum Length: 7 characters
Required: No
Since: 4.3

Telephony Info.Cisco Info.Last Line The last phone line used for the internal range of Vocera
lines.
Datatype: String
Maximum Length: 7 characters
Required: No
Since: 4.3

Telephony Info.Cisco Info.IP Address The IP address of the CUCM in dotted-decimal notation (for
example, 192.168.15.10).
Datatype: String
Maximum Length: 50 characters
Required: No
Since: 4.3

Telephony Info.Cisco Info.User Name The Vocera application user ID for CUCM.
Datatype: String
Maximum Length: 50 characters
Required: No
Since: 4.3

Telephony Info.Cisco Info.Password The Vocera application user ID for CUCM. Use only for
update.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administration Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: No
Since: 4.3

User Properties
The following table lists the properties of a User.

Since: 4.0

PROPERTY REFERENCE

74 VOCERA ADMINISTRATION INTERFACE GUIDE

Table 22: User properties

Key Description

User ID Vocera user ID. Enter an ID that is not already assigned to
another user on the system, being careful to choose a name
that you and the user can easily remember. The user ID is
not case-sensitive.
The User ID must start with a letter or digit. It must contain
only letters, digits, spaces, periods ('), underscores (_), or
dashes (-). No other characters are allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Password The user's Vocera password. The password is case-
sensitive. Use this property to create or update the user's
password.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administrator Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: No

Phone Password Password used to authenticate the user when accessing the
Genie from a phone.
Important: Your application should restrict the phone
password to be between 5 and 15 characters consisting of
letters or numbers. Special characters are not allowed. VAI
itself does not restrict the length of passwords or prevent
you from entering a password with invalid characters.
Datatype: String
Required: No
Since: 4.1

Last Name The user's last name. The name must start with a letter or
digit. It must contain only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other characters are
allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

First Name The user's first name. The name must start with a letter or
digit. It must contain only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other characters are
allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Alt Spoken Names Property set containing up to three variations of the spoken
name of the user.
Datatype: IndexedPropertySet
Required: No

Alt Spoken Names.* Represents each Alternate Spoken Name in the property set.
Datatype: String
Maximum Length: 50 characters
Required: No

Ident Phrase An identifying phrase that distinguishes this user from others
with the same name. Example: Rita Clark in Staffing
Datatype: String
Maximum Length: 100 characters
Required: No

PROPERTY REFERENCE

75 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Email Address An optional email address, which allows users to send
voice messages as an email attachment. Example:
jdoe@vocera.com
Datatype: String
Maximum Length: 40 characters
Required: No

Desk Phone The desk phone number or extension for the user.
Datatype: String
Maximum Length: 75 characters
Required: No

Cell Phone The user's cell phone number. You can enter digits, special
dialing characters, or special dialing macros.
Datatype: String
Maximum Length: 75 characters
Required: No

Home Phone The user's home phone number. You can enter digits,
special dialing characters, or special dialing macros.
Datatype: String
Maximum Length: 75 characters
Required: No

Pager Phone The user's pager number. You can enter digits, special
dialing characters, or special dialing macros.
Datatype: String
Maximum Length: 75 characters
Required: No

Dynamic Phone The user's dynamically assigned phone extension. Cannot
be updated.
Datatype: String

Vocera Phone The user's Vocera phone extension.
Datatype: String
Maximum Length: 75 characters
Required: No
Since: 4.1 SP4

Conference Group The current conference group for the user. A user can have
only one conference group at a time. You must specify a
valid group name.
Datatype: String

Employee ID Optional unique value that identifies a Vocera user.
Datatype: String
Maximum Length: 50 characters
Required: No

Cost Center The user's cost center ID, which enables Vocera to track
system usage by site and potentially allows an organization
to charge sites for relative usage.
Datatype: String
Maximum Length: 100 characters
Required: No

PIN Specify a value of the PIN for long distance calls. A telephony
PIN allows an organization to authorize or account for
telephone usage and to distribute telephone costs among
different users, departments, or sites. A PIN can include
digits, special characters, and PIN macros.
Datatype: String
Maximum Length: 75 characters
Required: No

Site The user's home site. If you don't specify a site, the Global
site is used.
Datatype: Site object, or a string representing the site's
internal name.
Required: No

PROPERTY REFERENCE

76 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Expire Time If the user is a temporary user, this property specifies when
the profile expires. Enter a date with the format mm/dd/yyyy.
The date must be later than the current date.
Datatype: String
Required: No

Call Blocking Defines the default call blocking behavior for any users or
groups not specified in the Block List or Accept List. Enter
one of the following values: Accept or Block.
Datatype: String
Required: No

Block List Property set containing users or groups whose calls are
blocked.
Datatype: IndexedPropertySet
Required: No

Block List.* Represents each user or group whose calls are blocked.
Datatype: Entity (User or Group)
Required: No

Accept List Property set containing users or groups whose calls are
accepted (not blocked).
Datatype: IndexedPropertySet
Required: No

Accept List.* Represents each user or group whose calls are accepted
(not blocked).
Datatype: Entity (User or Group)
Required: No

Buddies Property set containing the user's buddies. Each member of
the indexed set is itself a property set.
Datatype: IndexedPropertySet
Required: No

Buddies.* Represents each defined buddy (personal contact) in the
property set.
Datatype: KeyedPropertySet
Required: No

Buddies.*.Name Contact, User, or Group object that identifies the buddy.
Datatype: Entity object (Contact, User, or Group)
Required: Yes

Buddies.*.Nick Name Name used to call the buddy. The name must start with a
letter or digit. It must contain only letters, digits, spaces,
apostrophes ('), underscores (_), or dashes (-). No other
characters are allowed.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Buddies.*.VIP If true, the buddy has VIP status and can call the user even
when the user is blocking calls or in DND mode.
Datatype: boolean
Required: No

Buddies.*.RingTone One of the available ring tones, for example, Ring-Tone-01,
Ring-Tone-02, and so on. When the buddy calls the user,
the specified ring tone is used.
Datatype: String
Required: No

Verbal Call Announcement If true, the caller's name will be announced after the ring
tone.
Datatype: boolean
Required: No

Verbal Genie Greeting If true, the user will hear a spoken greeting ("Vocera") after
pressing the call button.
Datatype: boolean
Required: No

PROPERTY REFERENCE

77 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Tonal Genie Greeting If true, the user will hear a short tone after pressing the call
button.
Datatype: boolean
Required: No

Auto Answer If true, incoming calls are connected immediately, without
asking the user whether he wants to take the call.
Datatype: boolean
Required: No

Auto Who Called If true, the user can press the Call button on the badge
to play an announcement of the names of callers who
unsuccessfully tried to call since the last time the user
pressed the Call button, and who left messages.
Datatype: boolean
Required: No

Out Of Range Alert If true, the user will hear a warning tone when the badge
moves out of the range of the wireless network.
Datatype: boolean
Required: No

Low Battery Alert If true, the badge will warn the user whenever the battery
needs to be recharged.
Datatype: boolean
Required: No

Auto Logout If true, the user will be automatically logged out and the
badge will be turned off when the badge is placed in a
charger.
Datatype: boolean
Required: No

VMessage Alert If true, the user will hear an alert tone when he receives a
new voice message.
Datatype: boolean
Required: No

TMessage Alert If true, the user will hear an alert tone when he receives a
new text message.
Datatype: boolean
Required: No

Disable Alerts In DND If true, all alerts are suppressed when the user's badge is in
Do Not Disturb (DND) mode.
Datatype: boolean
Required: No

Play Older Messages First If true, messages are played in the order in which they are
received. Otherwise, messages are played in reverse order
(newest first).
Datatype: boolean
Required: No

Timestamp Played Messages If true, the user will hear the date and time each message
was sent when he plays messages.
Datatype: boolean
Required: No

Fast Call Setup If true, a call is connected as soon as the recipient
accepts it. Otherwise, the Genie always completes the call
announcement before connecting the call.
Datatype: boolean
Required: No

VMessage Reminder If true, the user will hear a tone every 10 minutes until he
retrieves new voice messages.
Datatype: boolean
Required: No

PROPERTY REFERENCE

78 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

TMessage Reminder If true, the user will hear a tone every 10 minutes until he
retrieves new text messages.
Datatype: boolean
Required: No

DND Reminder If true, the user will hear a tone every 10 minutes while his
badge is in Do Not Disturb (DND) mode.
Datatype: boolean
Required: No

Enable Pages If true, the user can receive numeric pages. Otherwise,
pages are disabled.
Datatype: boolean
Required: No

Announce Through Speaker If true, Vocera plays incoming call and message
announcements through the badge speaker when a
headset is plugged into the user's badge. Otherwise, both
announcements and actual calls or messages are played
through the headset.
Datatype: boolean
Required: No

Press Button To Accept Call If true, the user is required to accept or reject incoming calls
by pressing the Call or DND/Hold button. The user cannot
say "Yes" and "No" voice commands to accept and reject
incoming calls. This feature is useful in certain high-noise
environments.
Datatype: boolean
Required: No
Since: 4.1

Announce Group Calls If true, when the user receives a call made to a group, the
Genie will identify the group that was called.
Datatype: boolean
Required: No
Since: 4.1

Block Voice Messages If true, Vocera suppresses notifications when the user
receives a message.
Datatype: boolean
Required: No
Since: 4.1

Ring Tone One of the available ring tones, for example, Ring-Tone-01,
Ring-Tone-02, and so on. When the user receives a call on
his badge, the specified ring tone is used.
Datatype: String
Required: No

Genie Persona One of the available Genie names, for example, Mark or
Jean. The Genie is the voice that prompts users when they
interact with the Vocera system.
Datatype: String
Required: No

Forwarding Sets whether and where incoming calls are forwarded.
Enter one of the following values: None, Desk Phone, Cell
Phone, Home Phone, Voice Mail, Other Phone, or Other
User.
Datatype: String
Required: No

Forwarding Number Phone number used when Forwarding = Other Phone.
Datatype: String
Maximum Length: 30 characters
Required: No

Forwarding Name User or Group to forward to when Forwarding = Other
User.
Datatype: User or Group
Required: No

PROPERTY REFERENCE

79 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Forwarding When Specify when to forward calls. Enter one of the following
values: Never, All, Unanswered, or Offline.
Datatype: String
Required: No

System Properties
Vocera system properties are accessed from the VAI class. Use the VAI methods
getSystemProperties() and updateSystemProperties(), respectively, to read and write
these properties.

Since: 4.0

Table 23: System properties

Key Description

Product Major Version Vocera major version number. Example: given a product
version of 3.1, the product major version is 3. Cannot be
updated.
Datatype: String

Product Minor Version Vocera minor version number. Example: given a product
version of 3.1, the product minor version is 1. Cannot be
updated.
Datatype: String

Product Revision Vocera revision. Example: given a product version of
3.1SP1, the product revision is SP1. Given a product version
of 3.1, the product revision is 0. Cannot be updated.
Datatype: String

Time Last Update Time in milliseconds since 1/1/70 00:00 GMT of the last
update of a Vocera system property. Cannot be updated.
Datatype: long

Self Register If true, users can add themselves to the Vocera system
through the User Console.
Datatype: boolean
Required: No

Badge Log In If true, voice commands that enable users to log into and
log out of badges are enabled. Otherwise, users cannot
share badges, and you must specify each user's Badge ID.
Datatype: boolean
Required: No

Voice Prints Enabled If true, the voiceprints feature is enabled to provide more
secure authentication when users log in or check messages.
Datatype: boolean
Required: No

Auto Record Voice Prints If true, the Vocera server automatically prompts users to
record their voiceprints the next time they log in. Users are
prompted only if they have not yet recorded a voiceprint.
Datatype: boolean
Required: No

Admin Password Password for the Administrator user. Used only for update.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administrator Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: Yes

PROPERTY REFERENCE

80 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Dictation Enabled If true, dictation features are enabled for the Vocera
system. Dictation feaures require a special license. Separate
configuration is also required.
Datatype: boolean
Required: No
Since: 4.1

Block all VMI Messages in DND If true, blocks all VMI messages—even urgent messages—
for users in Do Not Disturb mode.
Datatype: boolean
Required: No
Since: 4.3

Block non-urgent VMI Messages in DND If true, blocks non-urgent VMI messages for users in Do
Not Disturb mode.
Datatype: boolean
Required: No
Since: 4.3

VMP Enabled If true, Vocera Messaging Platform (VMP) integration is
enabled.
Datatype: boolean
Required: No
Since: 4.3

Company Name of your company or organization. This value appears
in reports and logs.
Datatype: String
Maximum Length: 100 characters
Required: No

Days To Keep Messages Number of days to retain messages on the system. The
default is 7 days (one week).
Datatype: int
Required: No

Time To Sweep Time of day, in milliseconds from midnight, when messages
are deleted from the Vocera Server.
Datatype: long
Required: No

Locale Identifies the server's locale. Examples: AU, CA, GB, NZ, and
US.
Datatype: String
Required: No

Override Info Property set that specifies which system settings override
the corresponding property in the Vocera User Console. A
value of true indicates an override. The OverrideInfo.Override
Opt list specifies the actual property values.
Datatype: KeyedPropertySet
Required: No

OverrideInfo.Verbal Call Announcement If true, override each user's Verbal Call Announcement
property.
Datatype: boolean
Required: No

OverrideInfo.Verbal Genie Greeting If true, override each user's Verbal Genie Greeting property.
Datatype: boolean
Required: No

OverrideInfo.Tonal Genie Greeting If true, override each user's Tonal Genie Greeting property.
Datatype: boolean
Required: No

OverrideInfo.Auto Answer If true, override each user's Auto Answer property.
Datatype: boolean
Required: No

PROPERTY REFERENCE

81 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

OverrideInfo.Auto Who Called If true, override each user's Auto Who Called property.
Datatype: boolean
Required: No

OverrideInfo.Out Of Range Alert If true, override each user's Out Of Range Alert property.
Datatype: boolean
Required: No

OverrideInfo.Low Battery Alert If true, override each user's Low Battery Alert property.
Datatype: boolean
Required: No

OverrideInfo.Auto Logout If true, override each user's Auto Logout property.
Datatype: boolean
Required: No

OverrideInfo.AP Tour If true, override each user's AP Tour property.
Datatype: boolean
Required: No

OverrideInfo.VMessage Alert If true, override each user's VMessage Alert property.
Datatype: boolean
Required: No

OverrideInfo.TMessage Alert If true, override each user's TMessage Alert property.
Datatype: boolean
Required: No

OverrideInfo.Disable Alerts In DND If true, override each user's Disable Alerts In DND property.
Datatype: boolean
Required: No

OverrideInfo.Play Older Messages First If true, override each user's Play Older Messages First
property.
Datatype: boolean
Required: No

OverrideInfo.Timestamp Played Messages If true, override each user's Timestamp Played Messages
property.
Datatype: boolean
Required: No

OverrideInfo.Fast Call Setup If true, override each user's Fast Call Setup property.
Datatype: boolean
Required: No

OverrideInfo.VMessage Reminder If true, override each user's VMessage Reminder property.
Datatype: boolean
Required: No

OverrideInfo.TMessage Reminder If true, override each user's TMessage Reminder property.
Datatype: boolean
Required: No

OverrideInfo.DND Reminder If true, override each user's DND Reminder property.
Datatype: boolean
Required: No

OverrideInfo.Enable Pages If true, override each user's Enable Pages property.
Datatype: boolean
Required: No

OverrideInfo.Announce Through Speaker If true, override each user's Announce Through Speaker
property.
Datatype: boolean
Required: No

OverrideInfo.Press Button To Accept Call If true, override each user's Press Button To Accept Call
property.
Datatype: boolean
Required: No
Since: 4.1

PROPERTY REFERENCE

82 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

OverrideInfo.Announce Group Calls If true, override each user's Announce Group Calls
property.
Datatype: boolean
Required: No
Since: 4.1

OverrideInfo.Block Voice Messages If true, override each user's Block Voice Messages
property.
Datatype: boolean
Required: No

OverrideInfo.Enable Genie Access From
Phone

If true, override each user's Enable Genie Access From
Phone property.
Datatype: boolean
Required: No
Since: 4.1

OverrideInfo.Ring Tone If true, override each user's Ring Tone property.
Datatype: boolean
Required: No

OverrideInfo.Genie Persona If true, override each user's Genie Persona property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Verbal Call
Announcement

Specifies the value of the overridden Verbal Call
Announcement property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Verbal Genie
Greeting

Specifies the value of the overridden Verbal Genie Greeting
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Tonal Genie
Greeting

Specifies the value of the overridden Tonal Genie Greeting
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Auto Answer Specifies the value of the overridden Auto Answer property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Auto Who Called Specifies the value of the overridden Auto Who Called
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Out Of Range Alert Specifies the value of the overridden Out Of Range Alert
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Low Battery Alert Specifies the value of the overridden Low Battery Alert
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Auto Logout Specifies the value of the overridden Auto Logout property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt AP Tour Specifies the value of the overridden AP Tour property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt VMessage Alert Specifies the value of the overridden VMessage Alert
property.
Datatype: boolean
Required: No

PROPERTY REFERENCE

83 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

OverrideInfo.Override Opt TMessage Alert Specifies the value of the overridden TMessage Alert
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Disable Alerts In
DND

Specifies the value of the overridden Disable Alerts In DND
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Play Older
Messages First

Specifies the value of the overridden Play Older Messages
First property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Timestamp Played
Messages

Specifies the value of the overridden Timestamp Played
Messages property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Fast Call Setup Specifies the value of the overridden Fast Call Setup
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt VMessage
Reminder

Specifies the value of the overridden VMessage Reminder
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt TMessage
Reminder

Specifies the value of the overridden TMessage Reminder
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt DND Reminder Specifies the value of the overridden DND Reminder
property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Enable Pages Specifies the value of the overridden Enable Pages property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Announce
Through Speaker

Specifies the value of the overridden Announce Through
Speaker property.
Datatype: boolean
Required: No

OverrideInfo.Override Opt Press Button To
Accept Call

Specifies the value of the overridden Press Button To Accept
Call property.
Datatype: boolean
Required: No
Since: 4.1

OverrideInfo.Override Opt Announce Group
Calls

Specifies the value of the overridden Announce Group Calls
property.
Datatype: boolean
Required: No
Since: 4.1

OverrideInfo.Override Opt Block Voice
Messages

Specifies the value of the overridden Block Voice Messages
property.
Datatype: boolean
Required: No
Since: 4.1

OverrideInfo.Override Opt Enable Genie
Access From Phone

Specifies the value of the overridden Enable Genie Access
From Phone property.
Datatype: boolean
Required: No
Since: 4.1

PROPERTY REFERENCE

84 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

OverrideInfo.Override Opt Ring Tone Specifies the value of the overridden Ring Tone property.
Must be one of the available ring tones, for example, Ring-
Tone-01, Ring-Tone-02, and so on. When the user
receives a call on his badge, the specified ring tone is used.
Datatype: String
Required: No

OverrideInfo.Override Opt Genie Persona Specifies the value of the overridden Genie Persona
property. Must be one of the available Genie names, for
example, Mark or Jean. The Genie is the voice that prompts
users when they interact with the Vocera system.
Datatype: String
Required: No

Mail Info Property set containing email properties.
Datatype: KeyedPropertySet
Required: No

Mail Info.Server Type Mail server type that matches the protocol supported by
your email server. Enter one of the following values: pop3 or
imap.
Datatype: String
Required: No

Mail Info.Host Name of the POP or IMAP server that receives and stores
your email. Example: mail.yourcompany.com.
Datatype: String
Maximum Length: 60 characters
Required: No

Mail Info.User Name Address or ID of the Vocera system mailbox that the IT
administrator reserved for email sent to Vocera badges (for
example, vocerabadge@yourcompany.com).
Datatype: String
Maximum Length: 50 characters
Required: No

Mail Info.Password Password the Vocera server must use to log in to the Vocera
system mailbox. Use only for update.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administrator Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: No

Mail Info.SMTP Host Name of the server used for outgoing mail. Example:
mail.yourcompany.com.
Datatype: String
Maximum Length: 60 characters
Required: No

Mail Info.SMTP User Name User name or address used to log into the outgoing mail
server.
Datatype: String
Maximum Length: 50 characters
Required: No

Mail Info.SMTP Password Password the Vocera server must use to log into the
outgoing mail server. Use only for update.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administrator Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: No

PROPERTY REFERENCE

85 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Mail Info.SMTP Authentication If true, the mail server requires its subscribers to provide
authentication when sending an email message.
Datatype: boolean
Required: No

Mail Info.Mail Check Interval Time interval in seconds that the system waits to check for
mail.
Datatype: int
Required: No

Mail Info.Default Recipient Email address to receive warning messages that the Vocera
server can issue. The Vocera server sends alert messages to
this address to notify the user of significant system events,
such as low disk space and cluster failovers.
Datatype: String
Maximum Length: 50 characters
Required: No

Mail Info.Domain Name Domain name used in email addresses at your site. Entering
a value for this field ensures that anyone can reply to email
sent from the badge.
Datatype: String
Maximum Length: 60 characters
Required: No

Backup Info Property set containing Vocera system backup properties.
Datatype: KeyedPropertySet
Required: No

Backup Info.Auto Backup Enabled If true, automatic backups are enabled.
Datatype: boolean
Required: No

Backup Info.Auto Backup Frequency Frequency of automatic backups in days.
Datatype: int
Required: No

Backup Info.Auto Backup Time Time of day in milliseconds from midnight on which to start
the backup.
Datatype: long
Required: No

Backup Info.Max Backup Files Maximum number of backup files to save.
The maximum is the total number of all backup files,
regardless of whether they were created automatically or
manually. When you exceed the maximum number of files,
Vocera deletes the oldest file and saves a new one.
Datatype: int
Required: Yes

Logging Info Property set containing Vocera system logging properties.
Datatype: KeyedPropertySet
Required: No

LoggingInfo.Auto Mail Enabled If true, the Vocera Server automatically emails logs to
specified recipients.
Datatype: boolean
Required: No

LoggingInfo.Auto Mail Only On Restart If true, the Vocera Server automatically emails the most
recently closed log file only when the server restarts.
Otherwise, the Vocera Server automatically emails the most
recently closed log file immediately after the server opens a
new one; consequently, the system mails a log file at least
once a day.
Datatype: boolean
Required: No

LoggingInfo.Auto Mail Recipient 1 First email address for automatic log mailing.
Datatype: String
Maximum Length: 60 characters
Required: No

PROPERTY REFERENCE

86 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

LoggingInfo.Auto Mail Recipient 2 Second email address for automatic log mailing.
Datatype: String
Maximum Length: 60 characters
Required: No

Department Info Property set containing speech recognition options for
departments.
Datatype: KeyedPropertySet
Required: No

Department Info.Rec First Name and
Department

If true, Vocera recognizes the first name of a user as well
as the user's department when someone issues a voice
command. Example: Bill in Housekeeping.
Datatype: boolean
Required: No

Department Info.Rec Full Name and
Department

If true, Vocera recognizes the full name (both first and last
name) as well as the user's department when someone
issues a voice command. Example: Jane Doe in Sales.
Datatype: boolean
Required: No

Freq Dept Info Property set containing frequently called departments
information.
Datatype: KeyedPropertySet
Required: No
Since: 4.3

Freq Dept Info.Frequent Dept Preference
Enabled

Indicates whether the use of frequently called departments
has been enabled.
Datatype: boolean
Required: No
Since: 4.3

Freq Dept Info.Frequent Dept Adaptation
Enabled

Indicates whether adaptation of frequently called
departments has been enabled. If true, this property
enables the gathering of call history data to calculate
probabilities for frequently called departments.
Datatype: boolean
Required: No
Since: 4.3

Cluster Info Property set containing cluster information.
Datatype: KeyedPropertySet
Required: No

Cluster Info.Cluster Enabled If true, clustering is enabled.
Datatype: boolean
Required: No

Cluster Info.Cluster Members Property set containing cluster members.
Datatype: IndexedPropertySet
Required: No

Cluster Info.Cluster Members.* The set of properties for each member of the cluster.
Datatype: KeyedPropertySet
Required: No

Cluster Info.Cluster Members.*.Host Numeric IP address of the machine.
Datatype: String
Maximum Length: 15 characters
Required: No

Cluster Info.Cluster Members.*.Description A brief description of the cluster member to help identify the
machine.
Datatype: String
Maximum Length: 100 characters
Required: No

Report Server Info Property set containing Vocera Report Server information.
Datatype: KeyedPropertySet
Required: No

PROPERTY REFERENCE

87 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Report Server Info.Report Server IP Address IP address of the Vocera Report Server.
Datatype: String
Maximum Length: 50 characters
Required: No

Device Info Property set containing device information.
Datatype: KeyedPropertySet
Required: No
Since: 4.1

Device Info.Status Choices Property set containing device status values.
Datatype: IndexedPropertySet
Required: No
Since: 4.1

Device Info.Status Choices.* Represents each device status value.
Datatype: String
Maximum Length: 50 characters
Required: No
Since: 4.1

Auto Logout Info Property set that defines whether users will be automatically
logged out and the badge will be turned off when the badge
is placed in a charger.
Datatype: KeyedPropertySet
Required: No
Since: 4.1

Auto Logout Info.Auto Logout Enabled If true, users will be automatically logged out and the badge
will be turned off when the badge is placed in a charger.
Datatype: boolean
Required: No
Since: 4.1

Auto Logout Info.Auto Logout Period Number of minutes after which an inactive badge user is
logged off the Vocera system. When the value is 0 (zero), this
feature is disabled.
Datatype: int
Required: No
Since: 4.1

Application Info Property set that allows administrators to designate
information about VAI applications.
Datatype: KeyedPropertySet
Required: No
Since: 4.1 SP3

Application Info.Application Server IP
Address

IP address(es) of computers that are allowed to run VAI
applications.
Datatype: String
Maximum Length: 80 characters
Required: No
Since: 4.1 SP3

Handoff Info Property set that allows administrators to integrate Vocera
Server with Vocera Care Transition (formerly Optivox), which
allows you to standardize, manage, and monitor hand-offs in
healthcare.
Datatype: KeyedPropertySet
Required: No
Since: 4.3

Handoff Info.Handoff Enabled If true, Care Transition integration with Vocera Server is
enabled.
Datatype: boolean
Required: No
Since: 4.3

PROPERTY REFERENCE

88 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Handoff Info.Handoff Customer ID Care Transition customer ID.
Datatype: String
Required: No
Since: 4.3

Handoff Info.Handoff Server Phone The phone number of the Care Transition IVR system.
Datatype: String
Required: No
Since: 4.3

Handoff Info.Handoff Server IP Addr The IP address of the Care Transition server.
Datatype: String
Required: No
Since: 4.3

Default User Property set containing default user properties for newly-
created users.
Datatype: KeyedPropertySet
Required: No

Default User.Password Default password for new users. The password is case-
sensitive. Used only for update.
Important: Your application should restrict passwords to
be between 5 and 15 characters. Otherwise, passwords
that you set in your VAI application may not be valid for the
Vocera Administrator Console and User Console. VAI itself
does not restrict the length of passwords.
Datatype: String
Required: No

Default User.Verbal Call Announcement If true, users will hear the caller's name announced after the
ring tone.
Datatype: boolean
Required: No

Default User.Verbal Genie Greeting If true, users will hear a spoken greeting ("Vocera") after
pressing the call button.
Datatype: boolean
Required: No

Default User.Tonal Genie Greeting If true, users will hear a short tone after pressing the call
button.
Datatype: boolean
Required: No

Default User.Auto Answer If true, incoming calls are connected immediately, without
asking users whether they want to take the call.
Datatype: boolean
Required: No

Default User.Auto Who Called If true, users can press the Call button on the badge
to play an announcement of the names of callers who
unsuccessfully tried to call since the last time the user
pressed the Call button, and who left messages.
Datatype: boolean
Required: No

Default User.Out Of Range Alert If true, users will hear a warning tone when the badge
moves out of the range of the wireless network.
Datatype: boolean
Required: No

Default User.Low Battery Alert If true, the badge will warn users whenever the battery
needs to be recharged.
Datatype: boolean
Required: No

Default User.Auto Logout If true, users will be automatically logged out and the badge
will be turned off when the badge is placed in a charger.
Datatype: boolean
Required: No

PROPERTY REFERENCE

89 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default User.VMessage Alert If true, users will hear an alert tone when they receive a new
voice message.
Datatype: boolean
Required: No

Default User.TMessage Alert If true, users will hear an alert tone when they receive a new
text message.
Datatype: boolean
Required: No

Default User.Disable Alerts In DND If true, all alerts are suppressed when a user's badge is in
Do Not Disturb (DND) mode.
Datatype: boolean
Required: No

Default User.Play Older Messages First If true, messages are played in the order in which they are
received. Otherwise, messages are played in reverse order
(newest first).
Datatype: boolean
Required: No

Default User.Timestamp Played Messages If true, users will hear the date and time each message was
sent when they play messages.
Datatype: boolean
Required: No

Default User.Fast Call Setup If true, a call is connected as soon as the recipient
accepts it. Otherwise, the Genie always completes the call
announcement before connecting the call.
Datatype: boolean
Required: No

Default User.VMessage Reminder If true, users will hear a tone every 10 minutes until they
retrieve new voice messages.
Datatype: boolean
Required: No

Default User.TMessage Reminder If true, users will hear a tone every 10 minutes until they
retrieve new text messages.
Datatype: boolean
Required: No

Default User.DND Reminder If true, users will hear a tone every 10 minutes while their
badges are in Do Not Disturb (DND) mode.
Datatype: boolean
Required: No

Default User.Enable Pages If true, users can receive numeric pages. Otherwise, pages
are disabled for new users.
Datatype: boolean
Required: No

Default User.Announce Through Speaker If true, Vocera plays incoming call and message
announcements through the badge speaker when a
headset is plugged into the user's badge. Otherwise, both
announcements and actual calls or messages are played
through the headset.
Datatype: boolean
Required: No

Default User.Block Voice Messages If true, Vocera suppresses notifications when a user
receives a message. However, the user may still hear a
voice message alert tone (if the Voice Message Alert option
is selected), and a telephone icon appears on the badge
display when the user has unplayed voice messages.
Datatype: boolean
Required: No
Since: 4.1

PROPERTY REFERENCE

90 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default User.Enable Genie Access From
Phone

If true, it enables the ability to access the Genie from a
telephone to perform Vocera functions other than basic
calling.
The number of users that can use the phone access feature
is controlled by your Vocera license. Only users that have
been enabled to use the phone access feature can take
advantage of this feature.
Datatype: boolean
Required: No
Since: 4.1

Default User.Ring Tone One of the available ring tones, for example, Ring-Tone-01,
Ring-Tone-02, and so on. When a user receives a call on
his badge, the specified ring tone is used.
Datatype: String
Required: No

Default User.Genie Persona One of the available Genie names, for example, Mark or
Jean. The Genie is the voice that prompts users when they
interact with the Vocera system.
Datatype: String
Required: No

Default Site Property set containing default site properties.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info Property set containing default telephony properties.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Telephony
Enabled

If true, telephony features are enabled for the site.
Datatype: boolean
Required: No

Default Site.Telephony Info.Telephony
Interface Type

Type of telephony interface. Enter IP, Digital, or Analog.
Datatype: String
Required: No

Default Site.Telephony Info.Telephony # of
Lines

Number of telephone lines.
Datatype: int
Required: Yes (if telephony is enabled for the site)

Default Site.Telephony Info.Telephony
Protocol

Signaling protocol that your PBX uses at the network layer.
For IP PBX integration, enter the following value: SIP
Version 2.0.
For Digital PBX integration, enter one of the following values:
ISDN PRI, EURO ISDN PRI, or Wink Start.
DO NOT update this property if Telephony Interface Type =
Analog.
Datatype: String
Required: No

Default Site.Telephony Info.Telephony ISDN
Protocol

ISDN protocol used by your PBX. Enter one of the following
values: NI2, DMS, 5ESS, 4ESS, NT1, CTR4, QTE, NE1, or QNT.
Datatype: String
Required: No

Default Site.Telephony Info.Telephony
Framing

Framing that your PBX uses at the physical layer. Enter one
of the following values: ESF, D4, or CEPT1.
Update this property only if Telephony Interface Type =
Digital.
Datatype: String
Required: No

Default Site.Telephony Info.Telephony Line
Code

Line code that your PBX uses at the physical layer. Enter one
of the following values: B8ZS, AMI, or HDB3.
Update this property only if Telephony Interface Type =
Digital.
Datatype: String
Required: No

PROPERTY REFERENCE

91 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Area Code Area code of the region in which the Vocera server is
installed.
Datatype: String
Maximum Length: 10 characters
Required: Yes (if telephony is enabled for the site)

Default Site.Telephony Info.Local Access Sequence of numbers you use to get an outside line. For
example, a PBX might require you to dial a 0 or a 9 or an 8
to get an outside line.
By default, Vocera prepends this access code to any
number within the local area code.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Long Distance
Access

Sequence of numbers you enter before placing a long
distance call. For example, a PBX system might require you
to dial a 9 to get an outside line and then dial a 1 before a
long-distance telephone number. In this situation, enter 91.
By default, Vocera prepends this access code to any
number that includes an area code that is not the local area
code.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.System Phone
Number

Area code and phone number of the DID line or hunt group
you set up for the Vocera system. To use this number with
numeric pagers, enter an asterisk after the last digit of the
phone number.
Datatype: String
Maximum Length: 75 characters
Required: No

Default Site.Telephony Info.Direct Access
Phone Number

Area code and phone number of the DID line you set up for
specially licensed user access to the Vocera system. If you
have not obtained Vocera Access Anywhere user licenses
or you are not using ISDN or SIP signaling protocol, this
property should not be updated.
Datatype: String
Maximum Length: 75 characters
Required: No
Since: 4.1

Default Site.Telephony Info.Voice Mail
Access

Sequence of numbers you enter to access the company's
voice mail system.
A typical entry includes X, then the sequence of digits that
you dial to get into the voicemail system from an internal
phone, and possibly special dialing characters such as the *
or # to indicate the end of the sequence.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Seven Digit
Dialing

If true, the area code is omitted from the dialing sequence
for a local call.
Datatype: boolean
Required: No

Default Site.Telephony Info.PIN Setup Template for adding a PIN to a dialing sequence for long
distance calls. A PIN template can include digits, special
characters, and PIN macros.
Datatype: String
Maximum Length: 75 characters
Required: No

PROPERTY REFERENCE

92 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Default PIN The default PIN for long distance calls.
If a telephony PIN is not specified in the user's profile and the
user does not belong to a department group that has a PIN,
then the site PIN is used.
Datatype: String
Maximum Length: 75 characters
Required: No

Default Site.Telephony Info.Telephony
Extension Length

Specify the number of digits in an extension, or 0 (zero) to
allow variable length extensions.
Datatype: int
Required: No

Default Site.Telephony Info.Access Code Info By default, numbers in the local area code use the Default
Local Access Code and all others use the Default Long-
Distance Access Code. This property set contains telephone
numbers that are exceptions to the access code policy.
Each member of the indexed set is itself a property set.
Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.Access Code
Info.*

Represents each defined access code exception in the
property set.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range

Property set that defines a number range to use for direct
inward dialing.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range.Area Code

Area code for which the exception is defined.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Access Code
Info.*.Number Range.To

End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Access Code
Info.*.Access Code

Access code that the specified area code requires.
Datatype: String
Maximum Length: 10 characters
Required: Yes (for each access code exception)

Default Site.Telephony Info.Toll Info By default, numbers in the local area code are considered
toll-free, and others are considered to require toll-call
permissions. This property set contains telephone numbers
that are exceptions to the toll-call policy.
Datatype: IndexedPropertySet
Required: No

PROPERTY REFERENCE

93 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Toll Info.* Represents each defined toll info exception. Each keyed
set specifies an area code and phone numbers that can be
called even by users who do not have toll-call permissions
granted.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range

Property set that defines the number range for a toll info
exception.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range.Area Code

Area code for which the exception is defined.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Toll Info.*.Number
Range.To

End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Toll Info.*.Toll
Free

If true, the area code is toll free.
Datatype: boolean
Required: No

Default Site.Telephony Info.Paging Info Specifies properties for interacting with pagers.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Paging Info.Pager
Number Length

Specify the number of digits in a pager number, or 0 (zero) to
allow variable length numbers.
Datatype: int
Required: No

Default Site.Telephony Info.Paging
Info.Outside Page Setup

Template that determines how Vocera formats the string
passed to a pager outside the Vocera system. The default
value of this property is %N;%V%D. For more information,
see the Vocera Telephony Configuration Guide.
Datatype: String
Required: No

Default Site.Telephony Info.Paging Info.Inside
Page Setup

Template that determines how Vocera formats the string
passed to a pager inside the Vocera system. The default
value of this property is %N;%V%D. For more information,
see the Vocera Telephony Configuration Guide.
Datatype: String
Required: No

Default Site.Telephony Info.Paging
Info.Outside Page Setup for DialIn

Template that determines how Vocera formats the string
passed to an outside pager by a person calling into the
Vocera hunt group or DID number. The default value of this
property is %N;%X. For more information, see the Vocera
Telephony Configuration Guide.
Datatype: String
Required: No

PROPERTY REFERENCE

94 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Paging Info.Inside
Page Setup for DialIn

Template that determines how Vocera formats the string
passed to an inside pager by a person calling into the Vocera
hunt group or DID number. The default value of this property
is %N;%X. For more information, see the Vocera Telephony
Configuration Guide.
Datatype: String
Required: No

Default Site.Telephony Info.DID Info Property set containing direct inward dialing (DID)
information.
Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.DID Info.* Represents each defined range of direct inward dialing (DID)
numbers. Each keyed set specifies a prefix and the range of
phone numbers to use for direct inward dialing.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range

Property set that defines a number range to use for direct
inward dialing.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.Match Type

Type of number range to match. Enter one of the following
values: All, Starts With, or Range.
Datatype: String
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.Starts With

Sequence of characters to match. Used when Match Type =
Starts With.
Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.From

Start of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.To

End of range to match. Used when Match Type = Range.
Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.DID Info.*.Prefix Area code and prefix assigned to the range. For example,
if the local area code of the PBX is 408, and the corporate
prefix for all extensions is 790, you typically enter
(408)-790. In some situations, your PBX administrator may
assign a different prefix for you to use.
Datatype: String
Maximum Length: 50 characters
Required: Yes

Default Site.Telephony Info.Dynamic Phone
Info

Property set that specifies a range of dynamic phone
extensions. This allows you to configure Vocera to supply
telephone extensions on demand to users who need them.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Dynamic Phone
Info.Enabled

If true, dynamic extensions are enabled.
Datatype: boolean
Required: No

Default Site.Telephony Info.Dynamic Phone
Info.First

Specifies the first dynamic extension in the range.
Datatype: String
Maximum Length: 7 characters
Required: No

PROPERTY REFERENCE

95 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Dynamic Phone
Info.Last

Specifies the last dynamic extension in the range. The Last
value must be greater than the First value.
Datatype: String
Maximum Length: 7 characters
Required: No

Default Site.Telephony Info.Dynamic Phone
Info.Lifetime

Specifies the lifetime, in days or hours, of the assignment of
dynamic extensions. Enter 0 (zero) to make the extensions
permanent.
Datatype: int
Required: No

Default Site.Telephony Info.Dynamic Phone
Info.Hours

Specifies whether the lifetime of dynamic extensions is
measured in hours (true) or days (false).
Datatype: boolean
Required: No
Since: 4.1

Default Site.Telephony Info.Dynamic Phone
Info.Last Allocated

The last allocated dynamic extension. Cannot be updated.
Datatype: String

Default Site.Telephony Info.Shared Server
Info

Property set that contains information needed to allow
multiple sites to share a Telephony server.
Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.Shared Server
Info.*

Represents each defined site that shares this Telephony
server. Each keyed set specifies the site, hunt group
number, reserved range of lines for incoming calls, and the
tie line prefix.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Shared Server
Info.*.Site

Principal site for which Telephony is enabled.
Datatype: Site object

Default Site.Telephony Info.Shared Server
Info.*.System Phone Number

Area code and phone number of the DID line or hunt group
you set up for the Vocera system.
Datatype: String

Default Site.Telephony Info.Shared Server
Info.*.First Reserved Line No

First of the reserved lines for incoming calls.
Datatype: String

Default Site.Telephony Info.Shared Server
Info.*.Reserved Line Count

Number of reserved lines for incoming calls.
Datatype: int

Default Site.Telephony Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls through the tie line
to the selected site that is sharing the principal's telephony
server. Alternatively, this field could also be used to specify a
prefix for Direct Inward Dialing (DID) numbers at the selected
site.
Datatype: String
Since: 4.1

Default Site.Telephony Info.Call Signaling
Address

The IP address of your IP PBX or VoIP gateway. By default,
port 5060 is used. If you need to change the port, enter the
call signaling address in the form IP_Address:Port.
Datatype: String
Maximum Length: 75 characters
Since: 4.3

Default Site.Telephony Info.Cisco Info Property set containing default Cisco integration properties.
Datatype: KeyedPropertySet
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Enabled

Datatype: boolen
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Extension Mobility Enabled

Datatype: boolean
Required: No
Since: 4.3

PROPERTY REFERENCE

96 VOCERA ADMINISTRATION INTERFACE GUIDE

Key Description

Default Site.Telephony Info.Cisco Info.Phone The voice access number for CUCM. This number should
match the route pattern/number for the Vocera SIP trunk.
You can find route patterns in CUCM Console by choosing
Call Routing > Route/Hunt > Route Pattern.
Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco Info.First
Line

The first phone line used for the internal range of Vocera
lines.
Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco Info.Last
Line

The last phone line used for the internal range of Vocera
lines.
Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco Info.IP
Address

The IP address of the CUCM in dotted-decimal notation (for
example, 192.168.15.10).
Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco Info.User
Name

The Vocera application user ID for CUCM.
Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Password

The Vocera application user ID for CUCM.
Datatype: String
Required: No
Since: 4.3

	Vocera Administration Interface Guide
	Contents
	Overview
	VAI Features
	VAI Limitations
	About VAI Documentation
	System Requirements
	How to Upgrade an Existing VAI Application
	Getting Started With VAI
	VAI Class Hierarchy
	Developing VAI Applications
	Using the Sample Applications
	Avoiding Version Mismatch Problems
	VAI Example

	Working With Entities
	Entity Operations
	Creating Entities
	Querying Entities
	Updating Entities
	Deleting Entities

	Using Internal Names
	Working with Addresses
	Working with Buddies and Contacts
	Working with Devices
	Creating a Device
	Updating a Device
	Getting Devices
	Getting the Color or Type of a Device
	Modifying Device Status Choices
	Uploading Badge Logs

	Working with Groups
	Getting Subgroups
	Managing Group Membership
	Managing Group Permissions

	Working with Locations
	Working with Sites
	Working with Users
	Identifying Users
	Users and Group Membership
	Badge Users and Badge Status
	Importing User Data
	Sending a Text Message

	Working With Properties
	Using Keyed Property Sets
	Using Indexed Property Sets
	Persisting Application Data

	Managing the Vocera Server
	Connecting to the Vocera Server
	Using the VAI.open() Method
	Result Codes for the open() Method

	Getting Vocera Server Properties
	Setting Vocera Server Properties
	Controlling the Vocera Server
	Managing the Vocera Database
	Monitoring the Vocera Server
	Vocera Server States

	Error Handling
	Using the VAIException Class

	Security Features
	Controlling Access
	Using the mc.bat Utility
	VAI and Tiered Administrators

	Encrypted Passwords
	Authorizing VAI Applications
	Best Practices for Multiuser Applications

	Property Reference
	Address Properties
	Contact Properties
	Device Properties
	Group Properties
	Location Properties
	Site Properties
	User Properties
	System Properties

