
Vocera Messaging Interface Guide
Version 5.2.3

ii VOCERA MESSAGING INTERFACE GUIDE

Notice

Copyright © 2002-2019 Vocera Communications, Inc. All rights reserved.

Vocera® is a registered trademark of Vocera Communications, Inc.

This software is licensed, not sold, by Vocera Communications, Inc. (“Vocera”). The reference text of the license governing this software can be
found at http://www.vocera.com/legal/. The version legally binding on you (which includes limitations of warranty, limitations of remedy and
liability, and other provisions) is as agreed between Vocera and the reseller from whom your system was acquired and is available from that
reseller.

Certain portions of Vocera’s product are derived from software licensed by the third parties as described at http://www.vocera.com/legal/.

Microsoft®, Windows®, Windows Server®, Internet Explorer®, Excel®, and Active Directory® are registered trademarks of Microsoft Corporation in
the United States and other countries.

Java® is a registered trademark of Oracle Corporation and/or its affiliates.

All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owner/s. All other
brands and/or product names are the trademarks (or registered trademarks) and property of their respective owner/s.

Vocera Communications, Inc.
www.vocera.com
tel :: +1 408 882 5100
fax :: +1 408 882 5101

Last modified: 2019-06-19 11:27

Docs_VS_523Rel build 177

http://www.vocera.com/legal/
http://www.vocera.com/legal/

iii VOCERA MESSAGING INTERFACE GUIDE

Contents

Getting Started.. 5

About the VMI Documentation...5

VMI Features..5

System Requirements.. 6

Developing VMI Client Applications..6

The VMI Directory Structure..6

How to Develop VMI Client Applications... 6

Using the Sample Application.. 7

Configuring VMI...9
Enabling TLS for VMI...9

Enabling TLS for VMI on the Vocera Voice Server.. 9

Enabling TLS for VMI Clients.. 9

Setting Text Message Enunciation Properties.. 10

Specifying MsgEnunciateMode Per VMI Client or Site...11

Enabling or Disabling the "Skip" Response to VMI Messages.. 13

Configuring Button Responses for VMI Messages... 13

Configuring Urgent VMI Messages...15

Configuring VMI Telephony Properties... 15

Using the Vocera Messaging Interface..18

Using the VMI Class.. 18

Open Method..18

Message Method.. 19

Close Method..22

Using the VMIListener Class.. 23

HandleAck Method..23

HandleResponse Method.. 24

HandleConnectionFailed Method...24

Parameter Validity Checking.. 25

Understanding the Flow of Events... 25

Working with VMI Messages...27

Receiving VMI Messages... 27

Playing VMI Messages... 27

Using Voice Commands..27

Using Button Clicks on a Badge...28

Using the Message List...28

Reading VMI Messages... 29

Responding to VMI Messages... 30

Responding to Played Messages Using Voice Commands... 30

iv VOCERA MESSAGING INTERFACE GUIDE

Responding to Played Messages Using Buttons...30

Responding to Read Messages Using Menu Commands... 30

Saving and Deleting VMI Messages...31

Managing VMI Messages...31

Frequently Asked Questions... 32

VMI API Reference... 36

VMI Class...36

AddToGroup..36

Close... 37

DeleteMessage..37

GetVersion...38

LogEvent... 38

Message..39

Open... 41

QueryGroup...41

QueryUser... 42

RemoveFromGroup... 43

VMIListener Class...43

HandleAck...43

HandleConnectionFailed.. 44

HandleResponse... 44

Definitions...45

VMI Result Codes... 45

VMI Status Codes...45

VMI Acknowledgement Codes.. 45

VMI Priority Codes.. 46

Maximum Values... 46

5 VOCERA MESSAGING INTERFACE GUIDE

Getting Started

The Vocera Messaging Interface (VMI) is an application programming interface (API) that enables
text messaging between external systems and Vocera badges via the Vocera Voice Server. VMI
allows a client (for example, a nurse call system) to send a text message to a badge, and to
receive acknowledgements that describe the delivery status of the message, along with optional
responses from a message recipient.

About the VMI Documentation
This documentation provides the information you need to develop applications using the Vocera
Messaging Interface (VMI). It describes the C++ classes and methods that are implemented in the
VMI libraries, provides information on configuring VMI, and discusses the sample code included in
the Vocera Developer Kit.

VMI Features
The VMI provides the following features:

• C++ interface for developing client applications.

Client applications communicate with the Vocera Voice Server via a dynamic link library (DLL)
(32-bit or 64-bit) and header files provided by Vocera. The header files define a C++ API to the
VMI.

The API includes methods for sending a message to a badge, deleting a message from a
badge, and getting information about a user or group.

See VMI API Reference for detailed information about all VMI methods.

• Text messages from clients are sent directly to a badge.

The badge plays an alert and displays the message. Urgent messages are played
immediately.

• Recipients can play messages aloud.

Using button clicks or voice commands, badge users can play text messages aloud via text-
to-speech or (optionally) as audio files.

See Working with VMI Messages for more information.

• Client applications can specify responses.

A VMI message can supply any of the following: a list of responses, a callback number, audio
files containing recordings of the message and responses.

See Using the Vocera Messaging Interface.

• Automatic logging of interactions resulting from a message.

VMI notifies the client when a message is delivered, when it is acknowledged, and when the
recipient responds. See Understanding the Flow of Events.

A client application can use this information, for example, to escalate unanswered messages
to the badge of another user.

• Multiple connections supported.

GETTING STARTED

6 VOCERA MESSAGING INTERFACE GUIDE

VMI allows multiple client connections to the Vocera Voice Server, although each client can
maintain only one connection at a time.

System Requirements
To run a VMI client application, a computer must be able to run one of the following operating
systems:

• Windows 7

• Windows Server 2008 R2

• Windows Server 2012

The computer must have enough free hard disk space to store vmi.dll, the client application, and
any application data. The computer must also have enough memory to run the client application.

In addition, a VMI-enabled license key must be installed on the Vocera Voice Server. A VMI-
enabled license includes the letter N followed by a number that represents the number of allowed
client connections. For example, N6 in the license key indicates that 6 VMI client connections are
allowed.

When the Vocera Voice Server starts with a VMI-enabled license, it displays information similar to
the following in the server logs:

01/23/16 00:00:05.698 [I] [281] There are currently 2 connected VMI clients
of 4 licensed.

Developing VMI Client Applications
VMI client applications communicate with the Vocera Voice Server via a dynamic link library (DLL)
and header files provided by Vocera. The header files define a C++ API.

The VMI Directory Structure

The VMI directory on the Vocera Developer Kit CD contains all the information and files you need
to create VMI applications.

The VMI directory contains the following subdirectories and files:

Table 1: VMI Directories

Directory Content

\VMI\docs VMI documentation

\VMI\vmi VMI header files

\VMI\vmi\Win32 32-bit version of VMI DLL and library

\VMI\vmi\x64 64-bit version of VMI DLL and library

\VMI\vmitest vmitest sample application source files

\VMI\vmitest\Win32 32-bit version of vmitest DLL and executable

\VMI\vmitest\x64 64-bit version of vmitest DLL and executable

How to Develop VMI Client Applications

To develop a VMI client application:

1. Copy the following files from the VMI directory of the Vocera Developer Kit CD into your
development directory.

GETTING STARTED

7 VOCERA MESSAGING INTERFACE GUIDE

Table 2: VMI software files

Folder File Description

\VMI\vmi dll.h,
listener.h,
log.h, vmi.h

Header files to include in your C / C ++
source code.

\VMI\vmi\Win32\Release or \VMI
\vmi\x64\Release

vmi.lib Library file for linking your code to the VMI
implementation.

\VMI\vmi\Win32\Release or \VMI
\vmi\x64\Release

vmi.dll Dynamic link library containing the VMI
implementation.

2. Write the code to implement your client application.

When you use the VMI API, note the following requirements:

• VMI client IDs must be unique. Each client can maintain only one connection at a time.

• VMI message IDs must be unique for each client.

You must have a compiler and linker that can handle libraries (.lib files) generated by Microsoft
Visual C++ 2005.

3. Test your application.

4. Deploy your application.

Note: When you test and deploy your application, the vmi.dll file must be in the
library path of the machine running the application. Also, a VMI-enabled license key
must be installed on the Vocera Voice Server.

Using the Sample Application
Vocera provides a sample application in the form of a Microsoft Visual C++ 2005 project. The
project, called vmitest, is completely self-contained, and includes source code (vmitest.cpp
and vmitest.h) as well as vmi.dll, vmi.lib, and the header files you will need to complete
your integration.

The compiled and linked application, vmitest.exe, is provided as well. You can use it as a
reference, and as a test bench to make sure that the Vocera Voice Server is working properly.
Before you run it, put vmi.dll on your DLL path. (You can put the DLL in the same directory as
the executable program file.) For best results, have a Vocera Voice Server up and running with at
least one user logged in to a badge.

Note: vmitest is sample software provided solely to illustrate the use of the API. Vocera
provides it AS IS. You are solely responsible for verifying its suitability for any specific
purpose or application.

If you copy the VMI directory of the Vocera Developer Kit CD onto drive C of your development
computer, you can enter the following command to run the sample application:

c:\VMI\vmitest\Win32\Release\vmitest.exe

 or

c:\VMI\vmitest\x64\Release\vmitest.exe

The application is a command-driven 32-bit or 64-bit console application. When the application
starts, it queries the registry for SSL and Port options and loads those values if they exist.
The application then displays a list of commands. To issue a command, type its first letter (for
example, type O for Open).

GETTING STARTED

8 VOCERA MESSAGING INTERFACE GUIDE

Figure 1: Vmitest application

The application prompts you for the arguments for each command. For example, when you type
O, the application prompts for a string to identify the client. The value shown in brackets is the
default value you get by pressing the Enter key without typing a value. To enter an empty value
for a given argument, type a space and then press Enter. Values that you enter become the new
defaults. The initial set of defaults can be configured, if desired, via command-line options (see
the method ParseCommandLineOptions in vmitest.cpp for details).

You must issue the Open command before you can use the Message command to send a
message. When prompted for the text of the message, you can use the notation [CR] to
indicate a line break. After a message is sent, the application displays acknowledgment and
response callback messages as these events occur (if you are testing against a live Vocera Voice
Server).

9 VOCERA MESSAGING INTERFACE GUIDE

Configuring VMI

This chapter describes several ways to configure VMI for your Vocera system.

Enabling TLS for VMI
By default, VMI clients make a TCP connection to the Vocera Voice Server on port 5005.
Communication over this connection is not encrypted. For secure VMI communication, you can
enable encryption using Transport Layer Security (TLS). This requires configuration on both the
Vocera Voice Server and on the client-side VMI DLL (vmi.dll).

Enabling TLS for VMI on the Vocera Voice Server
There are two properties you can set in the properties.txt file on the Vocera Voice Server to
enable VMI encryption:

• IPVMISecureEnable – enables secure VMI support within the Vocera Voice Server. When this
property is set to TRUE the Vocera Voice Server opens a port to listen for secure VMI client
connections. The default is FALSE.

• IPVMISecureListeningPortNo – specifies the port the Vocera Voice Server uses to listen for
secure VMI client connections. The default is port 5007.

Note: The Vocera Voice Server uses an embedded self-signed certificate for
authentication. You cannot specify a different certificate, such as one from a Certificate
Authority.

To configure Vocera Voice Server for secure VMI connections:
1. On each Vocera Voice Server node, open the \vocera\server\properties.txt file in a

text editor.

2. Add the IPVMISecureEnable property and set it to TRUE.

3. Add the IPVMISecureListeningPortNo property and specify the port to use for secure VMI
connections.

4. Save the properties.txt file.

5. Stop the Vocera Voice Server and start it again. The Vocera Voice Server loads
properties.txt into memory.

Note: If you have a Vocera Voice Server cluster, stop and start the standby nodes
first, and then switch to the active node and choose Cluster > Failover in the Vocera
Control Panel.

Enabling TLS for VMI Clients
After you enable a TLS connection for VMI on the Vocera Voice Server, you can configure your
VMI client application to use a secure connection. The vmi.dll client registry interface provides
two entry points that let you register your application to use a secure TLS connection with the
Vocera Voice Server.

CONFIGURING VMI

10 VOCERA MESSAGING INTERFACE GUIDE

The VMI client queries the registry key "HKEY_LOCAL_MACHINE\Software\Vocera\VMI\Options"
for the following values:

Table 3: VMI client registry values

Value Data type Value data

SSL String true or false

Port String <port_number>

Use the rundll32.exe command-line utility to set the SSL and Port options for your VMI client.
To set a registry value, run rundll32.exe from the location where vmi.dll is located.

Note: When you run the rundll32.exe command, make sure you run it as an
administrator.

Here are some examples showing how to run the rundll32.exe command:

Set the SSL option: rundll32 vmi.dll,SetOpt SSL true

Set the Port option: rundll32 vmi.dll,SetOpt Port 5007

Clear the SSL and Port options: rundll32 vmi.dll,ClrOpt SSL
rundll32 vmi.dll,ClrOpt Port

After you run each of these rundll32 commands, press Enter.

Setting Text Message Enunciation Properties
When a Vocera device receives an urgent Vocera Messaging Interface (VMI) message, the device
plays an alert tone and then immediately plays the message along with the responses (if any) sent
with the message.

For all other text messages, a Vocera badge or VCS application plays an alert tone and displays
the text of the message; a Vocera smartphone plays an alert tone and prompts you whether to
open the message.

There are two properties you can set in the properties.txt file on the Vocera Voice Server to
control what types of text messages are played immediately on a badge or a Vocera smartphone:

• MsgEnuciateModeSmartphone – controls whether text messages received on Vocera
Smartphones (Wi-Fi phones manufactured by Motorola) are played immediately. This property
does not affect Vocera badges.

• MsgEnunciateMode – controls whether text messages received on Vocera badges or
smartphones running Vocera Connect are played immediately.

The following table summarizes how the setting of these properties affects enunciation:

Value Enunciated messages

0 Urgent VMI messages, high-priority VMP alerts, and urgent text messages sent by
email.
This setting is the default.

1 All urgent text messages.

2 All VMI messages.
Urgent messages continue to take priority. Their enunciation interrupts other
messsages and does not allow interruption by lower-priority messages; instead,
lower-priority messages are delivered but not enunciated.

3 All text messages.
Urgent messages continue to take priority. Their enunciation interrupts other
messsages and does not allow interruption by lower-priority messages; instead,
lower-priority messages are delivered but not enunciated.

CONFIGURING VMI

11 VOCERA MESSAGING INTERFACE GUIDE

Value Enunciated messages

4 - 9 None.

To set text message enunciation properties:

Learn how to set text messages enunciation properties.

1. On each Vocera Voice Server node, open the \vocera\server\properties.txt file in a
text editor.

2. Add the MsgEnunciateMode and MsgEnunciateModeSmartphone properties (if they have not
already been added).

Set each property to a value of 0 through 9, as described in Setting Text Message
Enunciation Properties on page 10.

For the MsgEnunciateMode property, you can also choose to enter a comma-delimited
list to control text message enunciation for each VMI application or site. See Specifying
MsgEnunciateMode Per VMI Client or Site on page 11.

3. Save the properties.txt file.

4. Stop the Vocera Voice Server and start it again. The Vocera Voice Server loads
properties.txt into memory.

Note: If you have a Vocera Voice Server cluster, stop and start the standby nodes
first, and then switch to the active node and choose Cluster > Failover in the Vocera
Control Panel.

Specifying MsgEnunciateMode Per VMI Client or Site

The MsgEnunciateMode property allows you to enter a comma-delimited list of values to specify
the enunciate mode for a VMI client, a site, or both.

This helps you control which text messages are enunciated for each VMI application or site.

Each item in the comma-delimited list consists of three subitems delimited by colons:

ClientID : SiteName : EnunciateMode

where

• ClientID = The unique Client ID for a VMI application (optional, can be left blank)

• SiteName = The current site of the recipient of the message (optional, can be left blank)

• EnunciateMode = A one-digit numeric value representing the enunciate mode, described in
Setting Text Message Enunciation Properties on page 10

CONFIGURING VMI

12 VOCERA MESSAGING INTERFACE GUIDE

The server processes the MsgEnunciateMode property from left to right using the following rules:

• The MsgEnunciateMode property values must be on one line. Values that run onto another
line are ignored.

• A blank ClientID or SiteName subvalue serves as a wildcard.

In the next value, the ClientID is blank, which means the value applies to all VMI client IDs:

San Jose:1

In the next value, the SiteName is blank, which means the value applies to all sites:

Connexall::1

• A more specific value always takes precedence. For example, the value Emergin:San
Jose:1 takes precedence over San Jose:2.

• If there is a tie between two values, the leftmost value takes precedence. For example, there
is a tie in the following two values, so the first one is used:

Emergin:Santa Cruz:0, Emergin:Santa
Cruz:4

• If a value cannot be resolved (for example, the ClientID and SiteName are specified incorrectly
or the EnunciateMode is missing), the default EnunciateMode value, 0, applies.

• If you omit the optional ClientID and SiteName subvalues, you can also omit the colons. For
example, the following values are all valid:

1, San Jose:3, Emergin::4

• Examples

MsgEnunciateMode = 0, San Jose:3, Emergin:San Jose:4
The following text messages are enunciated:

• All urgent VMI messages (0).

• All text messages received by users in San Jose ("San Jose:3"), except those sent by
Emergin, which are NOT enunciated ("Emergin:San Jose:4").

MsgEnunciateMode = 0, San Jose:1, Santa Clara:1, Emergin:San Francisco:2,
ConnexAll:Palo Alto:2, Cupertino:3, Santa Cruz:4

Note: For the purposes of this example, the MsgEnunciateMode property spans
multiple lines. However, in the actual properties.txt file, the MsgEnunciateMode
property must appear on one line.

The following text messages are enunciated:

• All urgent VMI messages (0).

• Urgent text messages received by users in San Jose ("San Jose:1")

• Urgent text messages received by users in Santa Clara ("Santa Clara:1")

• VMI text messages with the VMI client ID "Emergin" received by users in San Francisco
("Emergin:San Francisco:2")

• VMI text messages with the VMI client ID "ConnexAll" received by users in Palo Alto
"ConnexAll:Palo Alto:2")

• All text messages received by users in Cupertino ("Cupertino:3")

All text messages received by users in Santa Cruz are NOT enunciated ("Santa Cruz:4").

CONFIGURING VMI

13 VOCERA MESSAGING INTERFACE GUIDE

Enabling or Disabling the "Skip" Response to VMI Messages
By default, when users play VMI messages aloud they must either Accept or Reject the
message (or say another valid response); they cannot respond by saying "Skip," which skips the
message. However, you can enable the Skip response by adding the following property to the
properties.txt file on the Vocera Voice Server:

MsgDisableSkipMessageResponse = False

Note: Regardless of this property setting, Vocera users can still press the Call button and
say "Skip" to advance to the next message when they play their text messages or voice
messages aloud.

To enable or disable the "Skip" response for VMI messages:
1. On each Vocera Voice Server node, open the \vocera\server\properties.txt file in a

text editor.

2. Add the MsgDisableSkipMessageResponse property.

3. Set the value of the property to one of the following values:

• True – disables the "Skip" response.

• False – enables the "Skip" response.

4. Save the properties.txt file.

5. Stop the Vocera Voice Server and start it again. The Vocera Voice Server loads
properties.txt into memory.

Note: If you have a Vocera Voice Server cluster, stop and start the standby nodes
first, and then switch to the active node and choose Cluster > Failover in the Vocera
Control Panel.

Configuring Button Responses for VMI Messages
By default, when alerts and alarms are sent to a badge via the Vocera Messaging Interface, the
user must respond by either using voice commands or by selecting responses from a menu on
the device. In a noisy environment, it may be difficult to respond to urgent VMI messages using
voice commands. For faster and more accurate responses, you can configure the Vocera system
to allow users to respond using the Call or DND buttons on the device.

Important: If you are considering enabling button responses for urgent VMI messages, note the
following:

• If your Vocera system has implemented multiple VMI clients that use urgent message delivery,
the response choices MUST be consistent across all VMI clients. If the response choices are
different across VMI clients, DO NOT enable button responses for urgent VMI messages.

• If you choose to make this configuration change, make sure you adequately train users on the
new behavior. Otherwise, users will not know how to use buttons to respond to urgent VMI
messages.

• You cannot use the Call or DND buttons to respond to VMI messages that you play aloud
later using the "Play Text Messages" command.

Here is an example showing several button response properties for VMI messages:

VMITouchCallResponse = accept
VMITouchDNDResponse = reject
VMITouchCallHoldResponse = call back
VMIResponseTimeout = 15
VMITimeoutResponse = negative
VMIResponseMapping = accept, affirmative, reject, negative

CONFIGURING VMI

14 VOCERA MESSAGING INTERFACE GUIDE

If you omit VMITouch* properties from the properties.txt file, pressing the Call or DND
buttons while a VMI message is being played aloud does not send a response. Pressing the
Call or DND buttons while an urgent VMI message is being played for the first time cancels
message play. If you play a VMI message using the "Play Text Messages" command, pressing
DND cancels message play, and pressing the Call button suspends message play and allows
you to use voice commands (for example, "Save" and "Delete") to manage the message. See
Managing VMI Messages.

To configure button responses for VMI messages:
1. On each Vocera Voice Server node, open the \vocera\server\properties.txt file in a

text editor.

2. Add one or more of the following button response properties to the file. You do not need to
add all of these properties.

Property Description

VMITouchCallResponse Enter the Vocera response phrase that is used
when a user presses the Call button to respond to
a new VMI message.
Example: To make pressing the Call button
equivalent to the "accept" response, enter the
following property:
VMITouchCallResponse = accept

VMITouchDNDResponse Enter the Vocera response phrase that is used
when a user presses the DND button to respond
to a new VMI message.
Example: To make pressing the DND button
equivalent to the "reject" response, enter the
following property:
VMITouchDNDResponse = reject

VMITouchCallHoldResponse Enter the Vocera response phrase that is used
when a user presses and holds the Call button to
respond to a new VMI message.
Example: To make pressing and holding the Call
button equivalent to the "call back" response, enter
the following property:
VMITouchCallHoldResponse = call
back
Note: Do not omit the space in "call back".

VMIResponseTimeout Controls the maximum time (in seconds) that a
user can be prompted to respond to a new alert
or alarm. The default is 0, which means that no
explicit response timeout is specified, although the
speech port timeout will take effect after 3 minutes.
Example: The following property sets the VMI
response timeout to 15 seconds:
VMIResponseTimeout = 15

VMITimeoutResponse Controls the response that is used when
a new alert or alarm reaches the specified
VMIResponseTimeout. There is no default
value. If the VMIResponseMapping property is
specified (see below), enter a mapped response
value, not a middleware response value. The "call
back" response value cannot be used for this
property. If no value or an invalid value is specified,
no response is sent, which is equivalent to saying
"skip" to skip the alert or alarm.
Example: The following property sets the response
to "reject" whenever the response timeout is
reached for an alert or alarm:
VMITimeoutResponse = reject

CONFIGURING VMI

15 VOCERA MESSAGING INTERFACE GUIDE

Property Description

VMIResponseMapping Maps VMI responses passed from a middleware
system to other response choices. Enter a
comma-separated list of values where odd-
numbered values represent the middleware
response choices and even-numbered values
represent response choices that users will see and
hear on their Vocera devices. The values are case-
insensitive.
Example: The following property maps "accept"
and "reject" to "affirmative" and "negative,"
respectively:
VMIResponseMapping = accept,
affirmative, reject, negative

3. Save the properties.txt file.

4. Stop the Vocera Voice Server and start it again.

Note: If you have a Vocera Voice Server cluster, stop and start the standby nodes
first, and then switch to the active node and choose Cluster > Failover in the Vocera
Control Panel.

Configuring Urgent VMI Messages
The Vocera Voice Server plays one-way, urgent messages aloud to a large number of recipients
without the need to configure your environment for multicast or turn on Vocera Voice Server
properties.

In previous versions of Vocera Voice Server an urgent VMI message was sent to a group of users
utilizing a unicast message. Since urgent messages are played aloud, a separate speech port
was needed for each recipient.

The problem with this functionality is when your environment requires the ability to send urgent
messages to a large group. In this instance, the Vocera Voice Server might run out of available
speech ports, causing delivery of the message to be delayed for some recipients.

Prior to Vocera Voice Server version 5.2.0, the only way to reduce the number of speech ports,
was the difficult task of configuring multicast, rather than unicast messages, between the Vocera
Voice Server and Vocera client devices. In addition, you had to turn on the VMIBroadcastEnabled
property in the Vocera properties file.

The Vocera Voice Server has been enhanced so that unicast messages always utilize a single
speech port and you are no longer required to perform additional configuration tasks in your
environment.

Configuring VMI Telephony Properties
If your Vocera installation includes Vocera Telephony Server for telephony integration, you can
specify property values in the \vocera\dialogic\telproperties.txt file that define how a
Vocera badge interacts with telephony equipment via a VMI client application.

Note: If you use Vocera SIP Telephony Gateway for telephony integration, you can
configure trunk access codes (or TACs) to specify how specific dial strings are processed.

These properties are designed for use with VMI applications in the following situations:

• You need to adjust the badge volume for calls from other devices. For example, if badge
users are having trouble hearing calls from bedside speakers in a nurse call system, these
properties can help.

• A system requires a special key sequence to end a device-to-badge call after the badge user
hangs up.

CONFIGURING VMI

16 VOCERA MESSAGING INTERFACE GUIDE

The collection of VMI telephony properties must be complete. If you comment out one property
in the collection, you must comment out the entire collection. You can, however, specify one or
more empty values for a property in this collection. By default, the VMI telephony properties are
undefined and therefore disabled. The following table describes these properties.

Table 4: VMI telephony properties

Property Description

TelVMIDeviceTAC Specifies a trunk access code (TAC) to identify a device (such as a
nurse call system) that connects to a PBX to communicate with a
Vocera badge. By default, this property value is not defined. When it
is defined, this value activates the gain specified by the corresponding
TelVMIRxGain property, and the macro defined by the corresponding
TelVMIHangUpMacro property.
The TAC for any given device is set by the PBX administrator.
To specify TACs for multiple devices, use a forward slash (/) as a
separator character. White space is ignored. You can specify up to 50
TACs.
If two or more TACs begin with the same sequence of characters,
list them in descending order of length. For example, each of the
following TACs begins with the sequence 12: 12, 123, and 12345. In
the properties file, you would list them in the following order:
12345 / 123 / 12

TelVMIRxGain Specifies how much gain is added when a badge user chooses
the callback option to respond to a VMI message. By increasing
or decreasing this value, you increase or decrease the sound level
(volume) of the badge speaker in 6 dB increments.
For example, a value of 3 increases the volume by 18 dB (3 * 6 =
18). Valid values range from 0 to 6, inclusive. By default, this property
value is not defined. Optimum values should be determined in the field
by trial and error.
The specified gain is applied only if the corresponding
TelVMIDeviceTAC property is defined. The gain is removed when the
call ends. To specify gains for multiple devices, use the forward slash
(/) as a separator character. White space is ignored. You can specify
up to 50 gain values.

TelVMIHangUpMacro Specifies a sequence to dial when a Vocera badge ends a call
initiated using the callback option in response to a VMI message.
This property is especially useful when interacting with a device that
connects to a PBX via an analog line.
The required sequence varies depending on the device. For example,
nurse call systems from different vendors require different hang-up
sequences. Consult the device documentation for details.
The specified sequence is dialed only if the corresponding
TelVMIDeviceTAC property is defined. To specify more than one
macro, use the forward slash (/) as a separator character. White
space is ignored. You can specify up to 50 macros.

When you specify more than one value for any of these properties, the order is important:

• If two or more TACs begin with the same sequence of characters, list them in descending
order of length when you specify values for the TelVMIDeviceTAC property.

Vocera's parser processes a dial string from left to right, and when it finds a sequence of
digits that matches a value specified for TelVMIDeviceTAC, it interprets that sequence as
the TAC portion of the dial string. Therefore, given a dial string of 1234914087904100 and
two TelVMIDeviceTAC property values listed in the order 12/1234, the parser interprets the
first match, 12, as the TAC. However, when the same property values are listed in the order
1234/12, the first match is 1234.

• The TelVMIRxGain and TelVMIHangUpMacro values are associated with a TelVMIDeviceTAC
value, so you must list all property values in the same order. That is, the first
TelVMIDeviceTAC value corresponds to the first TelVMIRxGain value and the first
TelVMIHangUpMacro value, and so on.

CONFIGURING VMI

17 VOCERA MESSAGING INTERFACE GUIDE

For example, suppose a VMI client application interacts with a nurse call system made by
company NC1, a blood pressure monitoring system made by company BP, and another nurse
call system made by company NC2. The following code lists some sample values for this
scenario:

Specifying VMI telephony properties

NC1 BP NC2
#------------------------------------
TelVMIDeviceTAC = 835 / 7812 / 781
TelVMIRxGain = 4 / / 2
TelVMIHangUpMacro = ## / / *9*

In this example, a gain value of 4 and the hang-up macro ## are defined for nurse call system
NC1, which has the TAC 835. Similarly, a gain value of 2 and the hang-up macro *9* are defined
for nurse call system NC2, which has the TAC 781. However, the blood pressure monitor BP,
which has the TAC 7812, does not define a gain value or a hang-up macro. In the properties file,
such "empty" values can either be omitted or specified explicitly with spaces. Also, the TAC for
BP is listed before the TAC for NC2 because both TACs begin with the sequence 781 and the
TAC for BP is longer than the TAC for NC2. Listing the TACs in this order ensures that the Vocera
parser will extract them correctly from a dial string.

18 VOCERA MESSAGING INTERFACE GUIDE

Using the Vocera Messaging Interface

VMI client applications communicate with the Vocera Voice Server via a dynamic link library (DLL)
and header files provided by Vocera. The header files define a C++ API. The API is specified by
the C++ classes VMI and VMIListener, defined in vmi.h. The library vmi.dll implements VMI,
and is either statically or dynamically linked to the client application. The VMI DLL communicates
with the Vocera Voice Server through an internal TCP socket.

For detailed information about VMI classes and methods, see VMI API Reference. The source
code for a working VMI client application is provided in the VMI directory on the Vocera
Developer Kit CD. The key files are vmitest.cpp and vmitest.h.

Using the VMI Class
The VMI class contains methods for communicating with the Vocera Voice Server. The most
important methods in the VMI class are:

• Open Method

• Message Method

• Close Method

Open Method
The Open method establishes a TCP connection to the Vocera Voice Server. It must be called
before any other method. The Open method takes three arguments: a string that uniquely
identifies the client, a comma-separated string containing the IP address(es) of the Vocera
Voice Server(s), and a pointer to a VMIListener object that must be implemented by the client
application developer. The VMI DLL uses the VMIListener object to send acknowledgements
and other messages back to the client.

Important: Each VMI client must use a unique ID. If the same client ID is used for two
different VMI connections at the same time, the Vocera Voice Server will automatically
drop the earlier connection, log a warning to the server log, and send a warning email to
the Vocera Voice Server alert recipient(s).

The following code, simplified for readability, instantiates a subclass of VMIListener and
passes it to the Open method. It establishes a connection to a single Vocera Voice Server. See
vmitest.cpp for a more complex example.

Opening a connection

#include <vmi.h>
class MyListener : public VMIListener {
public:
 void HandleAck(long iMessageID,
 char* sLoginID,
 int iAckCode)
 {}

 void HandleResponse(long iMessageID,

USING THE VOCERA MESSAGING INTERFACE

19 VOCERA MESSAGING INTERFACE GUIDE

 char* sLoginID,
 char* sResponse)
 {}

 void HandleConnectionFailed(void)
 {}
};

 int main() {
 VMI* vmi = new VMI();
 MyListener* myL = new MyListener();
 int iResultCode = vmi->Open("MyClient", "192.168.15.10",
 myL);
 return iResultCode;
}

To establish a connection with a clustered Vocera Voice Server, call the Open method and specify
a comma-separated string containing up to four IP addresses for the sVoceraIPAddr parameter.
This ensures continued interoperability with the Vocera Voice Server after a failover occurs. The
following method call establishes a connection with a cluster of three Vocera Voice Servers.

Opening a connection to a Vocera cluster

char* sServerIPList =
 "192.168.15.10,192.168.15.11,192.168.15.12";
int iResultCode = vmi->Open("MyClient",
 sServerIPList,
 myL);

Message Method
The Message method sends a message to a badge via the Vocera Voice Server. In addition to the
message text, you can specify the recipient, message priority, an optional set of responses from
which the recipient can choose, and an optional custom alert tone.

VMI messages sent to a badge carry the following information:

USING THE VOCERA MESSAGING INTERFACE

20 VOCERA MESSAGING INTERFACE GUIDE

Table 5: Message data

Parameter Description

Message ID VMI uses the combination of message ID and client name to return
acknowledgments and other messages to the sender of a message. Therefore,
for any client that opens a connection to the Vocera Voice Server, message IDs
must be unique.
For example, if client ABC sends a message with ID 123, it should not send
another message with ID 123. However, client XYZ could send a message with
ID 123. The message IDs are the same, but the client names are different. A
timestamp is one way to keep message IDs unique.

Login ID One of the following:

• The user ID of the recipient user, given in the user's profile on the Vocera
Voice Server.

• The name of a Vocera group, or a group's phone extension.

Message The message text.

Ring tone In the current version, this value is always 0.

Priority Set to 2 for an urgent message; set to 1 for a high-priority message; set to 0 for
a normal priority message.

Optional callback phone
number

A phone number that the recipient can call to respond to the message.

Optional list of responses A comma-separated list of up to five responses (for example: Yes, No) from
which the recipient can choose using a menu on the badge. Each response
choice cannot exceed 15 characters.

Optional audio file used
for the alert tone

A custom audio file used for the alert tone for the message.

The following code shows how to send a message. This simplified example assumes that a
pointer to the VMI class has been instantiated, and that a connection to the server has been
opened.

Sending a message

/*
 Assumptions:
 VMI* vmi has been instantiated.
 vmi->Open succeeded.
*/
 long lMsgId = 123;
 char* sUser = "jsmith";
 char* sMsgText = "Hello";
 int iRingTone = 0; // Always 0 in this version
 int iPriority = 0; // Normal priority
 char* sPhoneNo = "555-1212"; // Callback phone number
 char* sResponses = "Yes,No"; // Comma-separated list
 char* sWAVFiles = "";
 int iResult = vmi->Message(lMsgId,
 sUser,
 sMsgText,
 iRingTone,
 iPriority,
 sPhoneNo,
 sResponses,
 sWAVFiles);

The Message method returns an integer that represents a result code (see VMI Result Codes
for a complete list). The code rcAccepted is returned to indicate success. If, for example, the
rcCouldNotConnect code is returned, it could mean that the Vocera Voice Server IP address
was incorrectly specified, or that the Vocera Voice Server is not running at the moment. The client
application may want to try again after a certain time.

USING THE VOCERA MESSAGING INTERFACE

21 VOCERA MESSAGING INTERFACE GUIDE

Custom Alert Tones and Audio Prompts
You can use custom audio files with VMI messages, either as the alert tone for the message or as
an audio prompt contained within the message.

Table 6: Vocera Voice Server locations of custom alert tones and audio prompts

Folder Description

\vocera\config\custom\prompts Location of custom alert tones
Note: After you place a WAV file in this folder, stop
and start the Vocera Voice Server to force devices to
download the custom alert tone.

\vocera\data\prompts\custom Location of custom audio prompts

Required Format of Audio Prompt Files

If you create custom audio prompt files to use with Vocera, the WAV files must have the following
format:

Audio Format: 16 bit Monophonic WAV PCM

Sampling Rate: 8000 samples/second

Important: Make sure audio prompt files used for alert tones are short in duration (no
more than 2 seconds).

Using Custom Alert Tones

The sWAVFiles parameter of the Message() method can be used to send a VMI message with
a custom alert tone. VMI alert tones behave differently depending on the priority of the message.
A normal priority message plays the sWAVFiles audio file once, a high priority message plays
the sWAVFiles audio file twice, and an urgent message plays the sWAVFiles audio file twice
followed by the prompt, "Urgent Message."

In the following example, the WAV file specified for the sWAVFiles parameter is normal.wav, a
custom audio file that has been placed in the \vocera\config\custom\prompts folder. That
WAV file will be the alert tone that is played on the badge. This example assumes that a pointer to
the VMI class has been instantiated, and that a connection to the server has been opened.

Sending a message using a custom alert tone

/*
 Assumptions:
 VMI* vmi has been instantiated.
 vmi->Open succeeded.
*/
 long lMsgId = 1011;
 char* sGroup = "N I C U Nurse";
 char* sMsgText = "REMINDER: Staff meeting at 3 p.m.";
 int iRingTone = 0; // Always 0 in this version
 int iPriority = 0; // Normal priority
 char* sPhoneNo = ""; // No callback phone number
 char* sResponses = ""; // No response needed
 char* sWAVFiles = "normal.wav";
 int iResult = vmi->Message(lMsgId,
 sGroup,
 sMsgText,
 iRingTone,
 iPriority,
 sPhoneNo,
 sResponses,
 sWAVFiles);

USING THE VOCERA MESSAGING INTERFACE

22 VOCERA MESSAGING INTERFACE GUIDE

Using Custom Audio Prompts in the Text of a Message

You can also play custom audio prompts within the text of a message. The message text in the
following example includes references to two audio prompts: bp (the prompt for "blood pressure")
and room.

Playing custom audio prompts

/*
 Assumptions:
 VMI* vmi has been instantiated.
 vmi->Open succeeded.
*/
 long lMsgId = 1011;
 char* sUser = "jdassin";
 char* sMsgText = "Please check patient bp in room 304.";
 int iRingTone = 0; // Always 0 in this version
 int iPriority = 0; // Normal priority
 char* sPhoneNo = "555-1212"; // Callback phone number
 char* sResponses = "Accept,Reject"; // Comma-separated
 list
 char* sWAVFiles = "";
 int iResult = vmi->Message(lMsgId,
 sUser,
 sMsgText,
 iRingTone,
 iPriority,
 sPhoneNo,
 sResponses,
 sWAVFiles);

You can create your own custom prompt files and use them in messages. The custom prompt
filename must start with an underscore character ("_") and the file must be placed in the following
folder:

\vocera\data\prompts\custom

When you reference a custom prompt file in a VMI text message, leave out the initial underscore
character and the filename extension. For example, if the prompt file is named _xray.wav, type
xray in the message.

Vocera automatically maps some text characters in a message, such as + and @, to audio
prompt files. For a list of text characters converted to prompts, see Message.

Close Method
The Close method closes the TCP connection to the Vocera Voice Server, and frees resources
used by VMI.

The following code shows how to close a VMI connection. This simplified example assumes that
a pointer to the VMI class has been instantiated, and that a connection to the server has been
opened.

Closing a connection

/*
 Assumptions:
 VMI* vmi has been instantiated.
 vmi->Open succeeded.
*/
vmi->Close();

USING THE VOCERA MESSAGING INTERFACE

23 VOCERA MESSAGING INTERFACE GUIDE

Using the VMIListener Class
The VMIListener class provides a callback interface that a VMI client application developer must
implement as a derived class. An object of this derived class must be supplied as the second
argument to the Open method of the VMI object. The methods of this class are called from the
VMI DLL when an acknowledgement or response notification arrives from the Vocera Voice
Server, or if the connection to the Vocera Voice Server fails.

The VMIListener methods are:

• HandleAck

• HandleResponse

• HandleConnectionFailed

HandleAck Method
The VMI DLL calls a client's implementation of the HandleAck method to send an
acknowledgement (for example, when a message is delivered) as opposed to a response (when a
recipient chooses from a list of responses supplied with a message).

The following code example shows how the HandleAck method is implemented in
vmitest.cpp.

Handling message acknowledgments

void VMITest::HandleAck(long iMessageID,
 char* sLoginID,
 int iAckCode)
{
 static char* sAckCodes[] =
 {
 "Delivered",
 "Read",
 "Call Started",
 "Call Ended"
 };
 char sPrompt[cMaxPrompt];
 Print("\n");
 sprintf(sPrompt,
 "Ack for Login ID %s and message id %ld: %s",
 sLoginID, iMessageID, sAckCodes[iAckCode]);
 Print(sPrompt);
}

Delivery status notifications sent from the Vocera Voice Server back to the client carry the
following information:

Table 7: HandleAck data

Parameter Description

Message ID Identifies the message in question.

Login ID Identifies the recipient.

Acknowledgement code An enumeration member that represents one of the following events:
• Message was successfully delivered to the badge
• Message was read (or played out loud) by the recipient
• Callback phone call started
• Callback phone call ended

You can implement HandleAck to do more than print status messages. For example, if the
interval between receiving a message-delivered acknowledgement and a message-read
acknowledgement is too long, a client application could take action (for example, send the
message to another user).

USING THE VOCERA MESSAGING INTERFACE

24 VOCERA MESSAGING INTERFACE GUIDE

HandleResponse Method
The VMI DLL calls a client's implementation of the HandleResponse method to signal that the
recipient has chosen one of the response picks supplied with the message.

The following code shows how HandleResponse is implemented in vmitest.cpp.

Handling message responses

void VMITest::HandleResponse(long iMessageID,
 char* sLoginID,
 char* sResponse)
{
 char sPrompt[cMaxPrompt];
 Print("\n");
 sprintf(sPrompt,
 "Response for Login ID %s and msg id %ld: %s",
 sLoginID, iMessageID, sResponse);
 Print(sPrompt);
 Print("\n");
}

Notifications signaling a response choice picked by the recipient carry the following information:

Table 8: HandleResponse data

Parameter Description

Message ID Identifies the message in question.

Login ID Identifies the recipient.

Response A string representation of the recipient's response.

Recipients can respond to a message more than once. The client is notified each time a response
choice is made.

VMI uses the combination of message ID and client name to return acknowledgments and other
data to the sender of a message. Therefore, for any client that opens a connection to the Vocera
Voice Server, message IDs should be unique. For example, if client ABC sends a message with ID
123, it should not send another message with ID 123. However, client XYZ can send a message
with ID 123. A timestamp is one way to keep message IDs unique.

HandleConnectionFailed Method
The VMI DLL pings the Vocera Voice Server periodically. If it doesn't receive a response, the VMI
DLL calls the client's implementation of the HandleConnectionFailed method to signal that the
TCP connection to the Vocera Voice Server has failed.

The following code shows how HandleConnectionFailed is implemented in vmitest.cpp.

Handling a failed connection

void VMITest::HandleConnectionFailed(void)
{
 Print("Connection failed - socket closed\n");
 bOpen = false; // global variable indicates gateway
 status.
}

The following diagram shows the flow of messages and events among the client application, VMI
DLL, and Vocera Voice Server as the VMI DLL tests the connection to the Vocera Voice Server
and calls the client application when the connection is lost.

USING THE VOCERA MESSAGING INTERFACE

25 VOCERA MESSAGING INTERFACE GUIDE

Figure 2: Flow of events for a failed connection

A client application might miss an acknowledgement or response if the connection to the Vocera
Voice Server is down at the time of the event in question; notifications are not buffered in the
Vocera Voice Server in such cases.

Parameter Validity Checking
The VMI DLL performs basic validity checking of VMI method parameters. If a parameter for a VMI
method call in your client application is invalid because it exceeds the maximum allowed size for
a value or is out of the range of valid enum values, the client will immediately return an rcFailed
return code. Your client application can interpret the result and handle it appropriately. For the full
list of VMI result codes, see VMI Result Codes.

Understanding the Flow of Events
The following diagram shows the flow of messages and events among the client application, VMI
DLL, Vocera Voice Server, and Vocera badge when the client sends a normal-priority message
and the recipient chooses one of the responses supplied with the message.

Figure 3: Flow of events for a normal priority message

USING THE VOCERA MESSAGING INTERFACE

26 VOCERA MESSAGING INTERFACE GUIDE

Here's a description of the diagram, starting from the top left.

1. The client application opens a TCP connection to the Vocera Voice Server. One of the Open
method parameters is a pointer to a VMIListener object implemented by the client. The VMI
DLL uses the VMIListener to call HandleAck and HandleResponse.

The client uses this connection to send text messages and receive status acknowledgements.
Each client must open its own VMI connection. For example, a nurse call system and a supply
monitoring application would require separate VMI connections.

2. The VMI DLL returns a result code to indicate a successful connection. The client reuses this
connection; you don't have to open a new connection for each VMI message.

3. The client sends a message. The message payload includes a list of possible responses (in
this example, the responses are Yes and No).

4. The Vocera Voice Server sends the message to the badge of the specified user.

5. The badge plays a tone and displays the message text.

6. The VMI DLL calls the client's HandleAck method with a status code indicating that the
message was delivered.

7. The badge user reads the message and presses the Select button.

8. The VMI DLL calls the client's HandleAck method with a status code indicating that the
message has been read.

9. The badge user chooses the response Yes.

10. The VMI DLL calls the client's HandleResponse method with a parameter that contains the
user's response.

11. When the client no longer requires a VMI connection, it closes the connection.

27 VOCERA MESSAGING INTERFACE GUIDE

Working with VMI Messages

VMI messages are sent to Vocera devices as text. You can read the text on the badge or
smartphone, or play them aloud via text-to-speech. A VMI message can also supply audio files
containing recordings of the message and response prompts.

VMI messages have three levels of call priority:

• normal—the badge plays a “klunk” and displays the message text on screen.

• high—the badge plays two “klunks” and displays the message text on screen.

• urgent—the badge plays two “klunks”, enunciates "urgent message," and then automatically
plays the message aloud.

Note: You can customize the alert tones for VMI messages. See Using Custom Alert
Tones.

See the Vocera Badge User Guide and the Vocera Smartphone User Guide for more information
about using badges and smartphones, respectively.

Receiving VMI Messages
When either your badge or smartphone receives a VMI message of normal or high priority, it plays
an alert tone and displays the text of the message. (The alert tone is different for normal and high
priority messages.) You can read the message or play it aloud using text-to-speech (or an audio
file, if supplied with the message).

When your badge receives an urgent message, it plays an alert tone and then immediately plays
the message. The alert tone for an urgent message is the same as for a high-priority message.

Note: If you are using the badge or smartphone to speak with someone when a
normal or high priority message arrives, you cannot play the message until the call ends.
However, the badge and smartphone both play urgent messages immediately, breaking
into a conversation and putting the original caller on hold if necessary.

The client application specifies the priority of a message. For example, in a nurse call application,
calls that originate from a bedside handset may be designated normal, and calls originating from
a shower pull or a code blue call alert may be designated urgent.

Playing VMI Messages
When you play a VMI message, the VMI DLL sends a message-read acknowledgement to
the client application, and the badge gives you an opportunity to respond. You can use voice
commands, button clicks, and the message list to play VMI messages.

Using Voice Commands
You can use voice commands to play VMI messages at any time. Use the same voice commands
you use to play other text messages.

WORKING WITH VMI MESSAGES

28 VOCERA MESSAGING INTERFACE GUIDE

 To play unacknowledged VMI messages:
1. Press the Call button.

2. Say, “Play text messages.”

3. The badge plays unacknowledged messages and responses (if any), starting with the newest
unacknowledged message.

To play VMI messages you have already acknowledged:
1. Press the Call button.

2. Say, “Play old text messages.”

3. The badge plays acknowledged messages and responses (if any), starting with the newest
acknowledged message.

Using Button Clicks on a Badge
Your badge displays the most recent message you have received until you play it or read it or
press the Call button.

To play a new message using button clicks:
1. Press the Select button twice. The badge plays the message.

2. After playing the message, the badge sends an acknowledgement to the client, plays
response prompts (if any), and then displays the message list.

Using the Message List
The message list displays the date and time you received each VMI message, preceded by one of
the following icons:

• An open envelope icon indicates a message you have played or read.

• A closed envelope icon indicates a message you have not listened to or read.

The message list presents the most recent text message first. In some situations, however, you
may want to play older messages. For example, if your badge receives two or three messages
while you are too busy to acknowledge them, you may want to play all of them when you have
the opportunity. In this situation, use the message list to play messages.

To play a message in the badge message list:
1. If the message list is not displayed, you can display it from the main screen by pressing the

Select button twice.

2. Use the Up and Down buttons to scroll through the list of messages until you select the
message you want.

By default, the most recent message is at the top of the list, the message you received
previously is next, and so on.

3. Press the Select button three times.

The badge plays the message, then plays response prompts (if any).

4. The device displays the message list again after you play a message. You typically use the
message list only to continue playing messages after listening to the most recent message.

 To display the badge message list when an unanswered message is not
visible:

You can display the message list when there is no unanswered message on the badge.

1. Look at the display screen to make sure the message list is not already visible.

2. Press the Select button twice to display the message list.

WORKING WITH VMI MESSAGES

29 VOCERA MESSAGING INTERFACE GUIDE

Reading VMI Messages
You can read VMI messages on a badge or smartphone and use menu choices to respond.

To read the most recent unacknowledged VMI message on a badge:
1. Look at the message on the display screen.

The badge displays the most recently received message until you press the Select button or
the Call button.

2. Press the Select button.

The badge displays a menu of responses.

The menu displayed on your badge may be slightly different. For example, if the message was
sent with a list of responses, the menu would include those responses. If the message was
sent without a callback number, the menu would not include the CALL option.

3. Use the Up and Down buttons to choose a response.

4. Press the Select button.

The badge sends the response, then displays the message list.

 To read a VMI message on a badge using the message list:
1. Use the Up and Down buttons to scroll through the list of messages until you find the

message you want.

2. Press the Select button.

The badge displays the text of the message.

3. Read the message, then press the Select button.

The badge displays a menu of responses.

4. Use the Up and Down buttons to choose a response.

5. Press the Select button.

The badge automatically sends the messaging system an acknowledgement, performs the
requested action, and then displays the message list again.

To read a VMI text message immediately on a smartphone:
1. When the VMI message is received, an alert window displays the message. Press Open

Message to open the message and respond to it.

2. The smartphone displays the body of the message, the sender's name or email address, and
the date and time the message was received by the Vocera Voice Server.

3. To respond to the message, press Menu, and then choose one of the response choices.

If you choose Play, the message is played aloud, and you can use voice commands to
respond to the message. See Responding to Played Messages Using Voice Commands.

To open a VMI text message from the New Messages list on a smartphone:
1. On the Home screen, press the Vocera Apps soft key. The Vocera Apps screen appears.

Figure 4: Vocera Apps screen

2. Press the Navigation keys—up, down, left, or right (

)—to highlight the Messaging app.

WORKING WITH VMI MESSAGES

30 VOCERA MESSAGING INTERFACE GUIDE

You can also press Menu > Messaging to select the Messaging app from a menu.

3. Press the center key

to select the Messaging app.

4. On the New Messages tab, use the navigation key to scroll through the list of messages
until you see the message you want to read. Newest messages are listed first. Press the

center key to open it.

5. The smartphone displays the body of the message, the sender's name or email address, and
the date and time the message was received by the Vocera Voice Server.

6. To respond to the message, press Menu, and then choose one of the response choices.

Responding to VMI Messages
You can use voice commands, button clicks, and menu commands to respond to messages.
Urgent VMI messages are automatically played aloud.

Responding to Played Messages Using Voice Commands
Text messages that are played aloud (such as urgent messages) play a beep when the message
is finished. After the beep, you have approximately 1.5 seconds to say one of the valid responses
before the Genie begins to prompt for a response. This allows you to respond quickly to the
message.

After the 1.5-second interval, the Genie announces the responses you can say. You can also call
back to the sender (by saying “Call back”) or skip the message (by saying “Skip”).

To respond to an unacknowledged VMI message that is played aloud:
1. Listen to the message, and wait for the beep to indicate that the message is finished.

2. Within 1.5 seconds after the beep, say one of the valid responses.

3. If you don't know what the valid responses are, do one of the following:

• Wait for the Genie to announce them, and then say your response.

• Press the Select button, and then use the Up and Down buttons to choose a response.
Press Select again to send the selected response.

Responding to Played Messages Using Buttons
You Vocera system can be configured to allow button responses to urgent VMI messages. This
feature allows you to respond to an urgent VMI message using the Call or DND buttons on the
device. Check with your Vocera system administrator to see if this feature has been enabled.

Note: You cannot use the Call or DND buttons to respond to VMI messages that you
play aloud later using the "Play Text Messages" command.

Responding to Read Messages Using Menu Commands
After you read the text of a VMI message and press Select, the badge displays a list of responses
for you to choose from. The list usually includes the following menu choices, along with
responses (if any) sent with the message.

Table 9: Badge Message menu commands

Command Description

PLAY Converts a text message to a spoken message and plays it for you.

CALL Available only when a callback number is sent with the message. Initiates a call
to the specified number.

TO NEXT MSG Skips to the next message in the list.

WORKING WITH VMI MESSAGES

31 VOCERA MESSAGING INTERFACE GUIDE

Command Description

DELETE MSG Erases the message from the badge memory and from the Vocera Voice
Server.

SAVE MSG Saves the message and prevents it from being automatically deleted. You are
limited to 20 text messages at a time, and you can save up to 10 of these
messages. Saved messages are maintained on the server until you delete them.
They are not affected by scheduled sweeps of the server.

BACK TO LIST Returns to the list of text messages, where you can select another message.

EXIT MENU Returns to the main screen.

Saving and Deleting VMI Messages
You typically do not have to save or delete VMI messages. Vocera automatically stores up to 20
text messages for you, regardless of whether you explicitly save them.

Note: Undelivered messages are not stored.

If you exceed your message limit, Vocera automatically deletes the oldest message and stores
the most recently received one. In addition, Vocera also routinely sweeps and deletes old
messages, regardless of whether they have been read, after storing them for a number of days
determined by the system administrator. The default sweep age for text messages is 2 weeks.

Because VMI messages are typically time-critical, this automated message management is all
that most users need. However, you can also explicitly save and delete text messages. See the
Vocera Badge User Guide for complete information.

Managing VMI Messages
You can issue voice commands to save, delete, and navigate while playing VMI messages,
as described in Playing VMI Messages. These commands do not let you respond to VMI
messages, they help you manage them.

The following table summarizes the voice commands you can use while playing messages. To
use these commands, press the Call button while playing the message, then say the command.
To stop playing a message, press the Hold/DND button, or press the Call button twice.

Table 10: Voice commands for working with messages

Action Recommended Voice
Commands

Alternative Forms

Delete the message you just played or are in the
process of playing.

Delete. Erase.

Save the message you just played or are in the
process of playing.

Save. Archive.

Play the next message. Next. Skip.

Replay the current message. Repeat.

Get the time the message was received. Time stamp. Time.

Get the date the message was received. Date stamp. Date.

Cancel message play. Cancel. Goodbye.

32 VOCERA MESSAGING INTERFACE GUIDE

Frequently Asked Questions

This section lists common question and answers related to how to use VMI.

What is the Vocera Messaging Interface?
The Vocera Messaging Interface (VMI) is an application programming interface (API) that enables
text messaging between external systems and Vocera badges and smartphones via the Vocera
Voice Server. VMI allows a client (for example, a nurse call or patient monitoring system) to send
a text message to a badge or smartphone, and to receive acknowledgements that describe the
delivery status of the message, along with optional responses from a message recipient.

What happened to the Nurse Call Interface (NCI)?
VMI replaces the nurse call interface (NCI) offered with previous versions of Vocera. In particular,
the NCI Call method has been replaced by the Message method, which has a different
signature. Also, the VMI Open method has a different signature and behaves differently from the
NCI Open method.

Which healthcare, hospitality, and middleware solutions are
supported with VMI?
For a list of vendors of nurse call, patient monitoring, patient flow, medical telemetry, hospitality,
and middleware systems, and other solutions that Vocera has integrated with using VMI, contact
your Vocera representative.

How do I use VMI to connect to a Vocera cluster?
When you call the VMI Open method to establish a connection, specify multiple comma-
separated IP addresses for the sVoceraIPAddr parameter. A cluster ensures continued
interoperability with the Vocera Voice Server after a failover occurs. If a VMI connection fails (as
it will in the event of a failover), your code should repeatedly try to open a new connection until it
succeeds.

Can you use VMI to connect to localhost or 127.0.0.1?
No. You cannot connect to localhost or 127.0.0.1. When you call the VMI Open method to
establish a connection, you must specify the real IP address(es) of the Vocera Voice Server.
The value you specify should be equal to the value of the VOCERA_LOCAL_HOST_ADDRESS
environment variable on the Vocera Voice Server.

How does a badge user read a VMI message?
When a VMI message arrives on the Vocera badge, the message text is displayed on the badge
immediately. A badge user can read the message on the badge LCD or press the Select button
twice to play the message aloud. Urgent VMI messages are automatically played aloud.

FREQUENTLY ASKED QUESTIONS

33 VOCERA MESSAGING INTERFACE GUIDE

When a VMI message is played aloud, a beep tone will sound when the message is finished
playing. At that point, the user can say one of the valid responses, such as “Reject” or “Accept.”
After 1.5 seconds, the user is placed into an interactive voice-driven menu where the valid
responses to the message are announced to assist the user. The user can say one of the valid
responses, call back to the sender, or skip the call.

How does a Vocera smartphone user read a VMI message?
The experience is very similar to reading a VMI message on a badge. When a VMI message
arrives on the Vocera smartphone, the message text is displayed on the phone immediately. The
user can read the message onscreen or press Open Message to open it. Urgent VMI messages
are automatically played aloud on the smartphone, and users can respond to the message using
voice commands.

What kinds of messages can be sent to a badge from VMI?
VMI can send text messages, and a VMI message can include audio files (.WAV files) containing
recordings of the message and responses (if any). Vocera users can play text messages aloud
using Vocera's text-to-speech feature.

How does VMI distinguish between normal, high priority, and
urgent calls?
VMI interprets three levels of call priority – normal, high, and urgent.

• When a Vocera device receives a normal VMI message, it plays a tone (“klunk”) and displays
the message text onscreen.

• When a Vocera device receives a high priority message, it plays a different tone (two “klunks”)
and displays the message text onscreen.

• When a Vocera device receives an urgent message, it plays a tone (two “klunks”) and then
automatically plays the message aloud.

Note: You can customize the alert tones for VMI messages.

Can VMI messages be sent to groups?
Yes. A VMI message can be sent to a group identified by the group name or the Vocera
extension stored in a group profile on the Vocera Voice Server.

When I send urgent VMI messages to a large group, why are
some of the messages delayed?
The Vocera Voice Server does not allow you to use all available speech ports for an urgent
message because that would prevent all other users from making calls. By default, whenever
60% or more of the speech ports are in use, the Vocera Voice Server defers delivery of urgent
messages. Normal and high priority messages do not use speech ports, so they are not affected.

If you require the ability to send urgent messages that do not require a response to a large group,
you can configure the Vocera Voice Server to use broadcast (rather than unicast) for urgent
VMI messages. Only one speech port is used for the broadcast. See Enabling or Disabling
Broadcast of One-Way, Urgent VMI Messages.

FREQUENTLY ASKED QUESTIONS

34 VOCERA MESSAGING INTERFACE GUIDE

Can VMI determine group and user status?
Yes. The QueryGroup method returns a list of group members, and the QueryUser method
returns user information including iStatus (scNotLoggedIn, scNotOnline, scOnline). Call
QueryGroup, then loop through the result set and call QueryUser to find and enquire about
specific users.

The Vocera Voice Server pings each online badge every 30 seconds. As a best practice, do not
call QueryGroup more than once every 15 seconds. More frequent calls will not yield better data,
and may overload the server.

What is the maximum number of characters per message?
The maximum number of characters allowed in a VMI text message is 256 characters.

How are VMI messages managed?
VMI can delete messages from a user’s badge by message ID and user ID. The message is
removed from the badge regardless of its status (Read, Saved, etc.)

Status and content for text messages are stored on the Vocera Voice Server and redelivered if
the user logs in using a different badge.

Up to 20 messages are stored automatically for each user. When the twenty-first message comes
in, the first (oldest) stored message is deleted. Saved messages can only be deleted by the user
or, if delivered by the VMI interface, by the VMI application.

The Vocera Voice Server Sweep interval and age can also be used to manage text messages.
Users can explicitly save messages. These messages are prefixed with “[S]” on the badge
display. Up to 10 messages can be saved.

If the saved message count is 10, then a saved message must be "Unsaved" (available from the
saved text messages menu on the badge) or deleted prior to saving another message.

Can speech prompts be customized?
Yes. Custom-recorded prompts can be installed and used in conjunction with Vocera's text-to-
speech facility.

Some common prompts, such as "BP", "Room", and "Bed", are provided with the Vocera
System. Vocera can provide additional such prompts as a professional service.

For more information, see Custom Alert Tones and Audio Prompts.

Can VMI run on the same server as the Vocera application?
Yes. However, VMI is only activated when an appropriate license key is entered in the Vocera
system, regardless of where the client applications are deployed.

Can multiple VMI clients connect to the Vocera Voice Server?
Yes. VMI supports multiple connections to the Vocera Voice Server. The VMI license determines
the maximum number of connections allowed.

For example, the following figure shows two VMI client applications. Suppose that one client
connects to a Nurse Call system that supports 100 beds, and the other client connects to a
single supply monitor. Each client uses only one VMI connection.

FREQUENTLY ASKED QUESTIONS

35 VOCERA MESSAGING INTERFACE GUIDE

Figure 5: Multiple VMI clients connecting to the Vocera Voice Server

If you have multiple VMI clients, make sure they open connections to the Vocera Voice Server
using unique client IDs. If the same client ID is used for two different VMI connections at the same
time, the Vocera Voice Server will automatically drop the earlier connection, log a warning to the
server log, and send a warning email to the Vocera Voice Server alert recipient(s).

Is VMI thread-safe?
No. VMI calls are not thread-safe, which means they must be synchronized by your application.
VMI calls can be made on multiple threads as long as they are made one at a time and not
simultaneously. To synchronize VMI calls from a single-process application, use a lock object
such as a critical section. For interprocess synchronization, use a mutex object. You can also use
a mutex to synchronize VMI calls from a single-process application, but a critical section is faster
and more efficient.

36 VOCERA MESSAGING INTERFACE GUIDE

VMI API Reference

The VMI API is specified by C++ classes defined in vmi.h. The link library vmi.dll implements
the API, and is either statically or dynamically linked to the external application. The DLL
communicates with the Vocera Voice Server through an internal TCP socket.

VMI Class
The VMI class contains methods for communicating with the Vocera Voice Server. An external
application works by constructing an instance of VMI and calling its methods.

The following table summarizes the VMI class methods.

Table 11: VMI class methods

Return type Signature and description

int (char* sLoginID, char* sGroupName)
Adds a user to a group.

void (void)
Closes a connection to the Vocera Voice Server.

int (long iMessageID, char* sLoginID)
Deletes a message from a badge.

char* (void)
Returns information about the VMI version.

int (long iEventID, char* sEventType, char* sEventInfo)
Logs information about external events—such as those from a middleware system—
to Vocera Report Server logs, which can be used to define custom reports.

int (long iMessageID, char* sLoginID, char* sText, int
iRingTone, int iPriority, char* sPhoneNo, char* sResponses,
char* WAVFiles)
Sends a message to a badge.

int (char* sClientID, char* sVoceraIPAddr, VMIListener* l)
Opens a connection to the Vocera Voice Server.

int (char* sGroupName, GroupInfo& gi)
Requests information about a Vocera group.

int (char* sLoginID, UserInfo& ui)
Requests information about a Vocera user.

int (char* sLoginID, char* sGroupName)
Removes a user from a Vocera group.

AddToGroup
Adds a user to a Vocera group.

Syntax
int AddToGroup { char* | sLoginID } { char* | sGroupName }

VMI API REFERENCE

37 VOCERA MESSAGING INTERFACE GUIDE

Parameters

Parameter Description

sLoginID The Vocera Voice Server user ID of the user to add.

sGroupName The name of the Vocera group that you are adding the user to.
The group name can be further qualified by site. For example,
CodeBlue:Cupertino specifies the Code Blue group at the Cupertino site.

Returns
Returns a value defined in VMI Result Codes.

See Also
• QueryGroup

• RemoveFromGroup

Close
Closes a connection to the Vocera Voice Server.

Syntax
void Close { void }

Parameters
None.

Returns
Void.

See Also
Open

DeleteMessage
Deletes a message from a user's badge.

Syntax
int DeleteMessage { long | iMessageID } { char* | sLoginID }

Parameters

Parameter Description

iMessageID Identifies the message. Message IDs must be unique for each client that opens
a connection to the Vocera Voice Server.

sLoginID Specifies the user ID of the badge user. It cannot be the name of a group or a
group’s phone extension.

Returns
Returns a value defined in VMI Result Codes.

See Also
• Message

• QueryUser

VMI API REFERENCE

38 VOCERA MESSAGING INTERFACE GUIDE

GetVersion
Returns information about the VMI version. If the VMI version and the Vocera Voice Server version
are not compatible, the Open method will fail.

Syntax
char* GetVersion { void }

Parameters
None.

Returns
Returns a string that identifies the VMI version. Example: 4.1

See Also
Open

LogEvent
Logs information about external events—such as those from a middleware system—to Vocera
Report Server logs, which can be used to define custom reports.

Syntax
int LogEvent { long | iEventID } { char* | sEventType } { char* | sEventInfo }

Parameters

Parameter Description

iEventID A 32-bit integer that uniquely identifies each LogEvent record in the report log
per VMI client.

sEventType A string that defines the category of event for Vocera Report Server analysis
purposes.
The following event types are supported:
• SystemEvent – records system level event information
• MessageEvent – links an event to a VMI MessageID
• CancelEvent – cancels an existing event

The maximum length of sEventType is 25 characters, as specified by the
cMaxEventType constant.
Note: Only MessageEvent and CancelEvent events will be reported by
standard Vocera Report Server Integration report(s). However, you may define
your own custom reports to report on SystemEvent events.

VMI API REFERENCE

39 VOCERA MESSAGING INTERFACE GUIDE

Parameter Description

sEventInfo A string consisting of comma-separated items that are specific to the
sEventType, and provide additional information, such as the MessageID, for
a given event associated with a particular VMI message. No more than 10 items
are allowed in this comma-separated string (as specified by the cMaxEvents
constant), and each item in the list is a string that cannot exceed 64 characters
(as specified by the cMaxEvent constant). Leading and trailing spaces in each
item of sEventInfo will be trimmed.
Each supported Event Type has its own reserved items in the sEventInfo
comma-separated value, and those reserved items must be presented in the
beginning of the comma-separated string in the specified order.

• MessageEvent – There are four reserved items in the following order:
"Event_GUID, MessageID, Escalation_Level, Event_Priority”
Where
• Event_GUID is a global unique identifer (a hexadecimal string) used to

link the associated VMI messages
• MessageID is an existing VMI message ID
• Escalation_Level is the event escalation level defined by middleware

vendors
• Event_Priority is the event prority defined by middleware vendors

• CancelEvent or SystemEvent – There is only one reserved item:
"Event_GUID"
Where
• Event_GUID is a global unique identifier (a hexadecimal string) that has

been used previously in a MessageEvent event.
Note: Other potential EventInfo values corresponding to SystemEvent
include "Login" or "Logout" as the second item in the comma-separated
string.

Returns
Returns a value defined in VMI Result Codes.

See Also
Message

Message
Sends a message to a user's badge.

Syntax
int Message { long | iMessageID } { char* | sLoginID } { char* | sText } { int |
iRingTone } { int | iPriority } { char* | sPhoneNo } { char* | sResponses } { char*
| sWAVFiles }

Parameters

Parameter Description

iMessageID Number that identifies the message. The message ID must be unique for
each client that opens a connection to the Vocera Voice Server. The client-ID
combination ties asynchronous acknowledgements and responses back to the
sender.

sLoginID Specifies the message recipient. VMI checks whether the string contains a
user ID of a user, a group’s phone extension, or the name of a group, in that
order. While checking if the string contains a group’s phone extension, alpha
characters are excluded.

VMI API REFERENCE

40 VOCERA MESSAGING INTERFACE GUIDE

Parameter Description

sText The message text. Maximum message length (256 characters) is defined in
vmi.h. Use the notation [CR] to indicate a line break.
B3000 and B2000 badges can display a 256-character message on the
scrollable display. However, on B1000A badges, VMI messages longer than
130 characters will be truncated.
Vocera automatically maps the following text strings to audio prompt files:

Character Prompt File

+ plus.wav

/ slash.wav

@ at.wav

. (period) point.wav if it precedes digits

% percent.wav

- minus.wav if it precedes digits. dash.wav if it does
not.

0-9 zero.wav through nine.wav

iRingTone Reserved for future use. Set to zero.

iPriority Set to 0 for normal priority, 1 for high priority, or 2 for an urgent message.
When a badge receives a normal message, it plays a tone ("klunk") and
displays the message text on the LCD. When the badge receives a high priority
message, it plays a different tone (two "klunks") and displays the message text
on the LCD. When the badge receives an urgent message, it plays a tone (two
"klunks") and automatically plays the message aloud.

sPhoneNo (Optional) Phone number for the message recipient to call.

sResponses A comma-separated list of up to five response choices. Each response choice
cannot exceed 15 characters.
The choices must consist only of the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890\'-_

Upper and lower case letters are allowed, but Vocera badges display upper
case letters only.
If no response choices are available, specify an empty string ("") as the value of
this argument. The NULL value is not acceptable.

sWAVFiles A WAV file to use for the message alert tone. The filename can be up to 64
characters, and it can include spaces. The file must be placed in the \vocera
\config\custom\prompts folder on the Vocera Voice Server so that it is
available to Vocera devices. If the file is not found, the default alert tone will be
used.
For information about the required audio format, sampling rate, and
recommended duration of audio files, see Required Format of Audio Prompt
Files.

Returns
Returns a value defined in VMI Result Codes.

See Also
• Custom Alert Tones and Audio Prompts

• DeleteMessage

• Open

VMI API REFERENCE

41 VOCERA MESSAGING INTERFACE GUIDE

Open
Opens a connection to the Vocera Voice Server. If the VMI version and the Vocera Voice Server
version are not compatible, the Open method fails. This method also fails if you try to open more
connections than allowed by the Vocera Voice Server license key. If a VMI connection fails (as it
will in the event of a failover), your code should repeatedly try to open a new connection until it
succeeds.

Syntax
int Open { char* | sClientID } { char* | sVoceraIPAddr } { VMIListener* | l }

Parameters

Parameter Description

sClientID Identifies the sender of the message.
Important: Each VMI client must use a unique ID. If the same client ID is
used for two different VMI connections at the same time, the Vocera Voice
Server will automatically drop the earlier connection, log a warning to the
server log, and send a warning email to the Vocera Voice Server alert
recipient(s).

Note: Enter alpha characters only with no numeric values.

sVoceraIPAddr A comma-separated string of Vocera Voice Server IP addresses in numeric
format.
If you are connecting to a single, standalone Vocera Voice Server, enter
only one IP address. If you are connecting to a cluster, specify multiple IP
addresses separated by commas. A Vocera cluster can have up to four
servers.
Note: You cannot specify "localhost" or 127.0.0.1, its equivalent loopback
address. You must specify the real IP address on which the Vocera Voice
Server is running.

l A VMIListener object to handle callbacks from the server.

Returns
Returns a value defined in VMI Result Codes.

See Also
• Close

• GetVersion

QueryGroup
Requests information about a Vocera group. If the group contains other groups, this method gets
user IDs of users in those groups, too, but each user ID is listed only once. This method does not
get the names of nested groups.

Syntax
int QueryGroup { char* | sGroupName } { GroupInfo& | gi }

Parameters

Parameter Description

sGroupName The name of a group on the Vocera Voice Server.
The group name can be further qualified by site. For example,
CodeBlue:Cupertino specifies the Code Blue group at the Cupertino site.

VMI API REFERENCE

42 VOCERA MESSAGING INTERFACE GUIDE

Parameter Description

gi A struct defined in vmi.h:

struct GroupInfo {
// # of members in the group.
int cMembers;
// Login names of users in the group.
char saMembers [cMaxMembers][cMaxLoginID];
};

Returns
Returns a value defined in VMI Result Codes.

See Also
• AddToGroup

• RemoveFromGroup

• QueryUser

QueryUser
Requests information about a Vocera user.

Syntax
int QueryUser { char* | sLoginID } { UserInfo& | ui }

Parameters

Parameter Description

sLoginID The user ID of a user on the Vocera Voice Server.

ui A struct defined in vmi.h:

struct UserInfo {
// Status codes defined in vmi.h.
// See enum SC
int iStatus;

// The Vocera Voice Server auto-generates
// a serial number for each user.
int iSerialNo;

// You could test (bVoiceprint == true)
// before sending a confidential message.
bool bVoiceprint;

// Access point location name or MAC address.
char sLocation [cMaxLocationName];

char sDeskPhone [cMaxPhoneNo];
char sPagerPhone [cMaxPhoneNo];
};

Note: Although the Vocera Voice Server automatically generates a serial number
for each user, the serial number is not guaranteed to be unique. When you
delete users or address book entries, their serial numbers will become available
for new users after the administrator restores data from a backup.

Returns
Returns a value defined in VMI Result Codes.

See Also
• QueryGroup

VMI API REFERENCE

43 VOCERA MESSAGING INTERFACE GUIDE

• VMI Status Codes

RemoveFromGroup
Removes a user from a Vocera group.

Syntax
int RemoveFromGroup { char* | sLoginID } { char* | sGroupName }

Parameters

Parameter Description

sLoginID The Vocera Voice Server user ID of the user to remove.

sGroupName The name of the Vocera group that you are removing the user from.
The group name can be further qualified by site. For example,
CodeBlue:Cupertino specifies the Code Blue group at the Cupertino site.

Returns
Returns a value defined in VMI Result Codes.

See Also
AddToGroup

VMIListener Class
The VMIListener class defines a callback interface that you must implement as a derived class.
An object of this derived class is supplied as the second argument to the Open method of the VMI
object. The methods of this class are later called from vmi.dll when an acknowledgement or
response arrives from the Vocera Voice Server, or if the connection to the Vocera Voice Server
fails.

The following table summarizes the VMIListener class methods.

Table 12: VMIListener class methods

Return type Signature and description

void (long iMessageID,
char* sLoginID,
int iAckCode)
Processes an acknowledgement signal from the server.

void (void)
Processes a TCP connection failure.

void (long iMessageID,
char* sLoginID,
char* sResponse)
Processes a response to a message.

HandleAck
Called by the VMI DLL when it receives an acknowledgement signal from the Vocera Voice
Server.

Syntax
void HandleAck { long | iMessageID } { char* | sLoginID } { int | iAckCode }

VMI API REFERENCE

44 VOCERA MESSAGING INTERFACE GUIDE

Parameters

Parameter Description

iMessageID Uniquely identifies the message when combined with the name of the sender
(client).

sLoginID The Vocera Voice Server login ID of the message recipient. It could be a user
ID, a group name, or a group's phone extension.

iAckCode An acknowledgement code defined in vmi.h.

enum AC
{
acDelivered,
acRead,
acCallStarted,
acCallEnded,
};

Returns
Void.

See Also
• HandleConnectionFailed

• HandleResponse

HandleConnectionFailed
Called by the VMI DLL when it detects a TCP connection failure.

Syntax
void HandleConnectionFailed { void }

Parameters
None.

Returns
Void.

See Also
• HandleAck

• HandleResponse

HandleResponse
Called by the VMI DLL when it receives a response to a message.

Syntax
void HandleResponse { long | iMessageID } { char* | sLoginID } { char* |
sResponse }

Parameters

Parameter Description

iMessageID Uniquely identifies the message when combined with the name of the sender
(client).

sLoginID The Vocera Voice Server login ID of the message recipient. It could be a user
ID, a group name, or a group's phone extension.

sResponse The recipient's response.

VMI API REFERENCE

45 VOCERA MESSAGING INTERFACE GUIDE

Returns
Void.

See Also
• HandleConnectionFailed

• HandleAck

Definitions
This section lists various VMI codes and constants.

VMI Result Codes
When a VMI method returns an integer, you can use the following result codes to interpret the
results. The codes are defined in an enum named RC in vmi.h:

Table 13: VMI result codes

Result code Description

rcAccepted Operation succeeded.

rcFailed Operation failed.

rcNotConnected Not currently connected - must first Open.

rcInvalidLoginID Invalid LoginID code.

rcLicenseFailed Vocera license violation.

rcUserNotLoggedIn User is not logged in at the moment.

rcUserNotOnline User is not online at the moment.

rcNoUsersAvailable No users available for group message.

rcMessageNotFound Message either does not exist or has been deleted.

rcInvalidGroupName Group with given name does not exist.

rcInvalidClientID Client ID does not satisfy syntactic constraints.

VMI Status Codes
The codes that indicate a badge user's status are defined in an enum named SC in vmi.h:

Table 14: VMI status codes

Status code Description

scNotLoggedIn User is not logged in from a badge.

scNotOnline User is logged in, but not currently on the network (possibly in
DND mode).

scOnline User is logged in and on the network.

VMI Acknowledgement Codes
The codes that indicate acknowledgement of a VMI message are defined in enum named AC in
vmi.h:

Table 15: VMI acknowledgement codes

Acknowledgement code Description

acDelivered Message was successfully delivered to recipient.

acRead Message was either opened by the recipient or automatically
played aloud.

acCallStarted Callback call started.

VMI API REFERENCE

46 VOCERA MESSAGING INTERFACE GUIDE

Acknowledgement code Description

acCallEnded Callback call ended.

VMI Priority Codes
The codes that indicate the priority of a VMI message are defined in enum named PC in vmi.h:

Table 16: VMI priority codes

Priority code Description

pcNormal 0. Normal priority. When a badge receives a normal priority
message, it plays a "klunk" tone and then displays the message
on the LCD.

pcHigh 1. High priority. When a badge receives a high priority message,
it plays two "klunk" tones and then displays the message on the
LCD.

pcUrgent 2. Urgent message. When the badge receives an urgent
message, it plays two "klunk" tones and then automatically
plays the message aloud.

Maximum Values
The header file vmi.h defines the following constants to specify various maximum values.

Table 17: VMI maximum values

Constant Value Description

cMaxClientID 100 Max ClientID string length.

cMaxLoginID 50 Max LoginID string length.

cMaxText 256 Max text message size and event log text.

cMaxPhoneNo 75 Max phone number length.

cMaxResponse 15 Max response choice string length.

cMaxResponses 80 Max response choices total string length.

cMaxWAVFiles 1000 Max WAV files total string length.

cMaxLocationName 101 Max LocationName string length including possible
site qualifier.

cMaxMembers 100 Max # of members to be returned by QueryGroup.

cMaxGroupName 101 Max GroupName string length including optional site
qualifier.

cMaxEventType 25 Max event type string length, which defines the
category of an event.

cMaxEvent 64 Max per event item string length in event info for
LogEvent().

cMaxEvents 10 Max items in event info string for LogEvent().

	Vocera Messaging Interface Guide
	Contents
	Getting Started
	About the VMI Documentation
	VMI Features
	System Requirements
	Developing VMI Client Applications
	The VMI Directory Structure
	How to Develop VMI Client Applications

	Using the Sample Application

	Configuring VMI
	Enabling TLS for VMI
	Enabling TLS for VMI on the Vocera Voice Server
	Enabling TLS for VMI Clients

	Setting Text Message Enunciation Properties
	Specifying MsgEnunciateMode Per VMI Client or Site

	Enabling or Disabling the "Skip" Response to VMI Messages
	Configuring Button Responses for VMI Messages
	Configuring Urgent VMI Messages
	Configuring VMI Telephony Properties

	Using the Vocera Messaging Interface
	Using the VMI Class
	Open Method
	Message Method
	Custom Alert Tones and Audio Prompts

	Close Method

	Using the VMIListener Class
	HandleAck Method
	HandleResponse Method
	HandleConnectionFailed Method

	Parameter Validity Checking
	Understanding the Flow of Events

	Working with VMI Messages
	Receiving VMI Messages
	Playing VMI Messages
	Using Voice Commands
	Using Button Clicks on a Badge
	Using the Message List

	Reading VMI Messages
	Responding to VMI Messages
	Responding to Played Messages Using Voice Commands
	Responding to Played Messages Using Buttons
	Responding to Read Messages Using Menu Commands

	Saving and Deleting VMI Messages
	Managing VMI Messages

	Frequently Asked Questions
	VMI API Reference
	VMI Class
	AddToGroup
	Syntax
	Parameters
	Returns
	See Also

	Close
	Syntax
	Parameters
	Returns
	See Also

	DeleteMessage
	Syntax
	Parameters
	Returns
	See Also

	GetVersion
	Syntax
	Parameters
	Returns
	See Also

	LogEvent
	Syntax
	Parameters
	Returns
	See Also

	Message
	Syntax
	Parameters
	Returns
	See Also

	Open
	Syntax
	Parameters
	Returns
	See Also

	QueryGroup
	Syntax
	Parameters
	Returns
	See Also

	QueryUser
	Syntax
	Parameters
	Returns
	See Also

	RemoveFromGroup
	Syntax
	Parameters
	Returns
	See Also

	VMIListener Class
	HandleAck
	Syntax
	Parameters
	Returns
	See Also

	HandleConnectionFailed
	Syntax
	Parameters
	Returns
	See Also

	HandleResponse
	Syntax
	Parameters
	Returns
	See Also

	Definitions
	VMI Result Codes
	VMI Status Codes
	VMI Acknowledgement Codes
	VMI Priority Codes
	Maximum Values

