- = Vocera Administration Interface Guide

Version 4.4.4

voCceErla

Copyright © 2002-2015 Vocera Communications, Inc. All rights reserved.
Protected by US Patent Numbers D486,806; D486,807; 6,892,083; 6,901,255;
7,190,802; 7,206,594, 7,248,881; 7,257,415, 7,310,541, 7,457,751; AU
Patent Number AU 2002332828 B2; CA Patent Number 2,459,955; EEC Patent
Number ED 7513; and Japan Patent Number JP 4,372,547.

Vocera® is a registered trademark of Vocera Communications, Inc.

This software is licensed, not sold, by Vocera Communications, Inc. (“Vocera”).
The reference text of the license governing this software can be found at
www.vocera.com/legal. The version legally binding on you (which includes
limitations of warranty, limitations of remedy and liability, and other provisions)
is as agreed between Vocera and the reseller from whom your system was
acquired and is available from that reseller.

Certain portions of Vocera's product are derived from software licensed by the
third parties as described at

Java® is a registered trademark of Oracle Corporation and/or its affiliates.

Microsoft®, Windows®, Windows Server®, Internet Explorer®, Excel®, and
Active Directory® are registered trademarks of Microsoft Corporation in the
United States and other countries.

All other trademarks, service marks, registered trademarks, or registered service
marks are the property of their respective owner/s. All other brands and/or
product names are the trademarks (or registered trademarks) and property of
their respective ownerys.

The contents of this document are Vocera proprietary and confidential.

Vocera Communications, Inc.
WWW.VOCEra.com

tel ;1 +1 408 882 5100

fax :: +1 408 882 5101
2015-04-18 11:50:51

ii -+ Vocera Administration Interface Guide

Contents

L0 YT T 13
VAL FRATUIES. .. 13
VAL LIMITatioNnS. . .oocee e 14
About VAI Documentation...........coooooiiiiiiiiiiii 14
System ReqQUIrEMENTS.ui i 14
Getting Started With VAL ... 15

VAl Class Hierarchy..........ooooiiiiiii i 15
Developing VAI Applications.............cooeiiiiiiiiiiiiiiiiie e, 16
Using the Sample Applications.............cooooiiiiiiiiiiii, 18
Avoiding Version Mismatch Problems.....................ccoi. 18
VAL EXaMPIE. .t 18

Working With Entities........ccccviimmiiiiieinncin s 21

ENtity Operations. oo o 21
Creating Entities.o 21
QuErying ENtiti@s. ... oeeii e 22
Updating Entities. 23
Deleting ENtities......ovuueiiiie e 24

Using Internal Names.oooiiiiii 25

Working with Addresses.ouuiiiiiiiiiii e 26

Working with Buddies and Contacts.............ccoiiiiiiiiiiiiiiiiiiee 27

Working With DeviCes.........cooviiiiiiiiii i 30
Creating @ DeVICO.....uu i 30
Updating @ DeviCe........uuiiiiiiiiiie e 31
GettiNg DeVICES. ... i 31
Getting the Color or Type of a Device........ccoooooeiiiiiiiiieeeee 33
Modifying Device Status Choices..............oooovviiieeiiiiiin. 33
Uploading Badge Logs.........uuiiiiiiiiiiii e 34

Working With Groups..........ouuiiiiii e 35
Getting SUbgroups......oooiiii 35
Managing Group Membership...........ccooooiiiiiiiiiiiii, 36
Managing Group Permissions............coovieviiiieeiiiiieeeiiieeeee 38

Working with Locations............ooooiiiiiiiii 40

Working With Sites........oooiiii 42

Working wWith USers.........ooooiiii i 44

Contents - i

Identifying USers...........coooiiiii 44

Users and Group Membership........ccoooooiiiiiiiiiiiiiiii 45

Badge Users and Badge Status.............ccoeeviiiiiiiiiiiiiiiiineee 46
Importing User Data.........coooiiiiiiiiii 47
Sending @ Text MESSAgE.uvviiiiiiiiii e 50
Working With Properties........cccccovcmiinnimmninncsn e 51
Using Keyed Property Sets.........ooooiiiiiiiiiiiii e 51
Using Indexed Property Sets..........oouiiiiiiiiiiiiiiiii e 53
Persisting Application Data............oooiiiiiiiiiiiii 55
Managing the Vocera Server..........cccoooveririnrrnsennssenssseesscnenns 59
Connecting to the Vocera Server..........cooooveeiiiiiiiiiiiiiiei 59
Using the VAl.open() Method..................cooiiiiiiiiiii 59

Result Codes for the open() Method.................ooooiiene. 61

Getting Vocera Server Properties...........oovveviiiiieiiiiiieeieee 62
Setting Vocera Server Properties...........oovvviiiiiieeiiiiiieei e 63
Controlling the Vocera Server............ccoooiiiiiiiiiiiii e 64
Managing the Vocera Database.............cccoiiiiiiiiiiii 65
Monitoring the Vocera Server..........ooooiiiiiiiii i 67
Vocera Server STates.o 69

Error Handling........cccceiiiicimmniccceiessscssse s sssssss s s ssssns s sssssmns s sssnnns 71
Using the VAIException Class..........coviiiiiiiiiiiiiiie e 71
Security Features..........cccccivmmmmmniiinnncssesss s 73
CoNtrOlliNG ACCESS.vtieeii e 73
Using the mc.bat Utility........coooooiiiiii 75

VAl and Tiered ADministrators..........coooviiiiiiiiiiiiii e 76
Encrypted PassWords.............uviiiiiiiiiiiiee e 77
Authenticating VAI Applications............coovviiiiiiiiiiiiiieeee 77
Best Practices for Multiuser Applications..............cccccceeeeeeeieiiiiiiin, 77
Property Reference........ccccvcccmrincccmnnscssns e ssenenns 81
AdAress Properties.couuuiiei e 82
CoNtaCt Properties. ooiiii e 84
DEVICE PrOPEITIES. .. e 85
GrOUP PrOPEITIES. ..ot 87
LOCAtioN Properties........coovuuiiiiiiii e 106
SIHE PrOPeItIES. ..o 108
USEI PrOPEITIES. ...t 123
SYStEM ProPerties. i 134

iv -+ Vocera Administration Interface Guide

Contents -+ v

vi --- Vocera Administration Interface Guide

List of Figures

1 SUDGIOUPS. ..o 36
2. NESTEA GrOUPS. ..o 37
3. Using mc.bat to create a certificate.............o.ooiiiiii 76
4. Servliet example.o 78

Contents - vii

viii --- Vocera Administration Interface Guide

List of Tables

1. VAL SyStem reqUIrEMENTS. ..o vt 14
2. VAL TIBraries. .o 17
3. VAL doCUMENtAtioN.uiieiiiii e 17
4. Methods for retrieving a set of devices...........ccooooiiiiiiiiiiiin 32
5. Methods for retrieving an individual device.................oooiieennn. 32
6. Methods for distinguishing between users...............ccccccceeeeiieiii, 44
7.BadgeStatus fields. ... 46
8. Methods for writing and reading application data........................... 56
9. Error codes for a failed connection..............cccvviiiiiiii 62
10. Methods for querying the properties of a Vocera Server.................. 62
11. Methods for controlling the Vocera Server...........cccoooooeiiiiiiinnn... 64
12. Methods for managing a Vocera database..............ccccoeoeeiiiiiiiiinnn, 65
13. Methods for monitoring the Vocera Server............cccoooooooiiiiiienn... 67
14.V0Cera Server StateS. 69
15. Methods for returning information about exceptions...................... 72
16. Methods for working with certificates..............cccooeeiiiiiin. 73
17. Methods for working with certificates.............ccccooeeiiiiii. 78
18. AAAress ProPertiES.uuut et 82
19. CONTACT PrOPEITIES. .. ettt 84
20. DEVICE PrOPEITIES. .ot 85
271, GrOUDP PrOPEITIES. ..ottt 87
22.L0CatioN PrOPEITIES. ... eiiiit ettt 106
23, SItE PrOPEITIES. .. et 108
24, USEI PIOPEITIES. .. ettt e 123
25. SYSTEM PrOPErtIES. .. .v i 134

Contents -+ ix

x -+ Vocera Administration Interface Guide

List of Examples

1. VAl program example........ooooiiiiiiiiii e 18

2. String representation of a KeyedPropertySet..............ccccvvvieiiin. 19

3. UserSet and User eXample......oooooiiiiiiiiiieeeeeee e 21

4. Property sets used to create users and locations............................. 22

5. QUErYING an eNtity....ooouiiiii 22

6. Updating the description of a location.......................ccoooei L, 23

7.Deleting @ USEI....cooiiiii i 24

8. Removing members from a group............ooceviiiiiiiiiiiiiiii e 24

9. Getting internal names for entities.............cccoeeeiiiiiiiiii 25
10. Getting addresses for @ Site..........ccooviiiiiiiiiiiii 26
11.AddING @ CONTACE. . ..uviiiiiii e 28
12. Adding an inside buddy............ooooiiiiiiiiiii 29
13.Creating @ AeVICE....oooiiiiiii e 30
14.Updating @ deVICe.....ooiiiiiii e 31
15. GEHHING ABVICES. ..uviiiiii e 32
16. Getting the color and type of a device...........oooviiiiiiiiiiiiii, 33
17. Modifying device status choiCes...........ooviviiiiiiiiiiiiie e 33
18. Uploading badge 10g5s.........oooviiiiiiiiiii e 34
19. Getting SUDGIOUPS. .. .vv i 36
20. MaNAGING GrOUPS. eeeeii ettt 37
21. Granting and revoking permissions for a group............c...cc.cooeiiii. 39
22. Getting location information............cccoooooiiiii 40
23.Creating a 10Cation.......oooiiiiiii i 41
24. Moving a group to another site...........cccoeoiiiiiiiiiii 42
25. Omitting the area code from the dial string................ccccceveeniii 43
26. Getting groups fOr @ USEr........oooiiiiiiiiiiieieee e 45
27. Getting the current location for a badge...........cccooooviiiiiiiinnn. 46
28. Importing users from an external database.......................oooe 47
29.SQL code for an external database............ccccoooeiiiiiiiiiiii 49
30. SQL code that populates the DEPT table.............c.ccooeiiiiiiiii . 49
31.SQL code that populates the EMP table...................ccooooiiiil 50
32.5ending @ text MESSAGE. iiieiiiiiiiiie e 50
33. Getting Property KeYs.........uoiiiiiiiiiiici e 51
34. Getting location Properties..........oovvviviiiiie e 52
35. Using a KeyedPropertySet to update an entity....................c...oooeen. 53

Contents -+ xi

36. Creating and querying an IndexedPropertySet................cccoeeeiiinnnn. 53

37. Updating elements in an IndexedPropertySet.............ccoooiiiiiiinnnn.n. 54
38. Writing and reading application data...............ccccviieiiiii, 56
39. OpeNning @ CONNECTION. .. . vttt e 60
40. Getting license information.................oooooiii 63
41. Updating Vocera Server properties............ccoeeveeeeeeiiiiiiiiiieeeeeeein 63
42. Stopping and starting the Vocera Server.............coooiiiiiiiieeenee 65
43. Restoring the Vocera database from a backup file........................... 66
44. Using VAlListener to monitor the Vocera Server..............cccccceeeeen.. 67
45. Catching an eXception.......o.oiuiii i 71
46. Getting exception messages and result codes................coeeeeiiinn.., 72
47. Using certificates with application passwords................................. 74
48. Using certificates without application passwords............................. 75

xii -+ Vocera Administration Interface Guide

Overview

The Vocera Administration Interface (VAI) is a Java API that enables you to
control and administer the Vocera system programmatically. Using VAI, you
can perform almost all the Administration Console and User Console functions
described in the Vocera Administration Guide and the Vocera User Console
Guide. Familiarize yourself with the Administration Console and the User
Console—structure, function, and features—before you start programming
with VAL

VAl Features

Applications built using VAI can run on any machine (including non-Windows
platforms) that has network connectivity to the Vocera server. While VAI does
not build in GUI capability, it supports efficient data retrieval in the service

of GUI applications, and includes search methods and status callbacks that
facilitate the development of such applications.

Here are some of the things you can do with VAI:
e Administer the Vocera system
* Query and update system settings
e Create, edit, delete, and query Vocera entities (users, groups, etc.)
e Start and stop the Vocera Server
e Backup, restore, and empty the Vocera database

¢ Integrate Vocera with enterprise applications. For example, you could update
Vocera groups dynamically using data from a scheduling application.

¢ Integrate Vocera with backend databases. For example, you could populate
the Vocera database from your HR database.

e Create a customized Administration Console. For example, you could enable
access to selected features based on user roles.

Overview --- 13

VAI Limitations

VAI Limitations

The initial release of VAI has some limitations compared to the console
applications. VAl cannot:

¢ Load data from a CSV file.
¢ Operate the Data Checker.

However, in both cases, you can obtain the same effect in your VAl application
by writing your own code to perform that functionality.

About VAI Documentation

The Vocera Administration Interface Guide (this guide) explains how to develop
applications using VAI. It describes key VAI features and explains how to
perform common programming tasks.

Also, an HTML-based Javadoc reference to the VAI classes are in the \VAI\docs
\javadocs directory of the Vocera Developer Kit CD.

VAI documentation uses a simplified version of Hungarian notation to
indicate variable types in parameter declarations. For example, the prefix "i"
indicates an integer (as in i Resul t Code), the prefix "s" indicates a String
(as in sUser Nane), and the prefix "kps" indicates a KeyedPropertySet (as in
kpsUser).

Also, when myVai appears in the text or a code example, it refers to an instance
of the VAI class created to represent a connection to a Vocera server. See VAI
Example on page 18 for an example.

System Requirements

The following table lists the minimum hardware and software requirements for
developing applications using VAI.

Table 1. VAI system requirements

Component Requirement

Vocera libraries The classes that implement VAI are stored in server.jar. You
also need logi.crypto1.1.2.jar, which handles encryption
and decryption tasks, for example, when working with
passwords. Both libraries are installed on the Vocera Server
in the vocera\server\lib directory. They must be copied to
your development directory and added to the classpath of your
development machine.

Java Compiler JDK 6.0 (1.6)

14 --- Vocera Administration Interface Guide

Getting Started With VAI

Component Requirement

Java Virtual JRE 6.0 (1.6)

Machine

(Optional) IDE Any IDE or editor that can produce text files suitable for the
Java compiler.

Hardware RAM, CPU, and free disk space required by the Java compiler
and IDE.

License A VAl-enabled license key.

You enter a license key when you install the Vocera server. If
you are adding VAl to an existing Vocera installation, set the
system environment variable named VOCERA_LICENSE to a
VAl-enabled license key value. You can set this variable from
the Advanced page of the System settings Windows Control
Panel. Restart the computer to make the new license take
effect.

Getting Started With VAI

This section describes how you can get started developing applications with
VAL

VAl Class Hierarchy

In general, VAI class names correspond to data displayed in the Administration
Console or the User Console. For example, the Locat i on class encapsulates
the data displayed in the Locations screen in the Administration Console. There
are a few exceptions:

e The Addr ess class and the Addr essSet class correspond to Address Book
page in the Administration Console.

e The Cont act class and the Cont act Set class correspond to Buddies (more
specifically, to outside buddies) managed via the User Console.

¢ The Si t e class encapsulates data from the Telephony screen and the Sites
screen of the Administration Console.

The following list shows the VAI class hierarchy.
® class java.l ang. Obj ect

e cl ass vai . BadgeSt at us

e class vai.Entity

e cl ass vai . Address

Overview --- 15

Developing VAI Applications

® class vai . Cont act
e class vai . Device
e class vai.Goup
e class vai.Location
e class vai.Site
e class vai. User
e class vai.EntitySet
e cl ass vai . Addr essSet
® cl ass vai. Cont act Set
e cl ass vai . Devi ceSet
e class vai .G oupSet
® class vai.LocationSet
® class vai. SiteSet
® class vai . User Set
e class vai.Licenselnfo
e class vai . PropertySet
e cl ass vai .| ndexedPropertySet
e cl ass vai . KeyedPropertySet
e class java.lang. Throwabl e (implements j ava. i o. Seri al i zabl e)
e class java.l ang. Exception
e class vai. VAl Exception

e class vai. VAl

Developing VAl Applications

16 -

This section outlines the basic steps in developing an application using VAL

To develop VA applications:

1. Copy the following files from the %vocera_drive%\vocera\server\lib
directory of the Vocera Server into your development directory.

Vocera Administration Interface Guide

Developing VAI Applications

Table 2. VAl libraries

File Description

server.jar and Vocera libraries

logi.crypto1.1.2.jar The classes that implement VAI are stored in

server.jar. You also need logi.crypto1.1.2.jar,
which handles encryption and decryption tasks,
for example, when working with passwords. Both
libraries are provided on the Vocera Developer

Kit CD. They must be in the classpath of your
development machine.

2. Copy the following files from the VAINdocs directory of the Vocera
Developer Kit CD into your development directory.

Table 3. VAI documentation

File Description

(Optional) An electronic version of the VVocera Administration
VAIDevGuide.pdf Interface Guide (this document).

(Optional) Javadocs An HTML-based Javadoc reference to the VAI classes.
folder

3. Write the code to implement your client application.

You must have a Java compiler compatible with JDK 6.0 (1.6). You can write
and edit code using any IDE or editor that can produce text files suitable for
the Java compiler.

At run time, your application's classpath must include server.jar and
logi.crypto1.1.2.jar.

Also, a VAl-enabled license key must be installed on the Vocera server.

4. Deploy your application.

After you develop a VAl application, you'll need to package its files so that
you or other users can install it. Many development environments include
tools for packaging and deploying applications.

If your application uses a certificate file for security, remember to deploy the
certificate file with the application.

Overview --- 17

Using the Sample Applications

Using the Sample Applications

On the Vocera Developer Kit CD, Vocera provides sample VAl applications
in the \WAl\samples directory. Each sample has its own Readme.txt file
that describes how to build and run the application, as well as any other
configuration information.

Before building and running a VAl sample application, make sure you copy the
latest server.jar file from the %vocera_drive%\vocera\server\lib directory of
the Vocera Server into your development directory.

Note: VAl sample applications are sample software provided solely to illustrate
the use of the API. Vocera provides the samples AS IS. You are solely responsible
for verifying their suitability for any specific purpose or application.

Avoiding Version Mismatch Problems

VAl Example

When you deploy your VAl application, always make sure that the Vocera Server
you are connecting to is at the same version or later of the server.jar file that
you are using in your application. Otherwise, your application may encounter

a server mismatch error and fail to connect to the server. If this happens, copy
the server.jar from the %vocera_drive%\vocera\server\lib directory on the
Vocera Server into your application's \lib folder. Generally, you should not need
to revise or rebuild your application unless it uses methods that have changed
since the version of server.jar on the Vocera Server.

Here's a simple code example that retrieves data from a Vocera server. A
discussion of the code follows the listing.

Example 1. VAI program example

import vai.?*;

public class VAl Denpo {
public static VAl nyVAl = new VAI();
public static void main(String[] args) {

try {
nmyVai . open("192.168. 1. 1", "Admi nistrator", "adm n",

nul l);
KeyedPr opertySet kps = nyVai . get Syst enProperties();
Systemout. println(kps.toString());
nmyVai . cl ose();
} catch (VAI Exception ve) {
System out. println(ve. get Message());

18 --- Vocera Administration Interface Guide

VAI Example

The example instantiates a VAI object to represent a connection to a Vocera
server. Throughout this documentation, when nyVai appears in the text or a
code example, it refers to an instance of the VAI class.

The VAI . open() method opens a connection to the Vocera Server. The
method specifies the IP address(es) of the Vocera server computer(s), an
administrator's user name, and the corresponding password. For simplicity,
this example hard-codes the login credentials. When security is a concern, an
application should prompt for login credentials at the beginning of each VAI
session.

The example retrieves Vocera system properties into a KeyedPr oper t ySet
object, which manages property data as a list of key-value pairs, where each key
is a string, and each value is either a string or another property set.

After printing the properties, the program closes the VAI connection to the
Vocera Server and releases associated resources. As a best practice, call the
cl ose() method to close VAI connections explicitly.

The following listing shows a portion of the output generated by the sample
program (actual values will vary depending on specific Vocera system settings).
This listing is a string representation of a VAI KeyedPr opert ySet instance,
which encapsulates a collection of key-value pairs. A key is either a string (such
as Product Major Version) or another property set (indicated by the keyword
Set and delimited by square brackets).

Example 2. String representation of a KeyedPropertySet

Set
[
Product Maj or Version =4
Product M nor Version =0
Product Revi sion =0
Ti me Last Update = 1143050438804
Sel f Register = fal se
Local e = US
Mail Info = Set
[
Server Type = pop3
Host =
User Nane =
Encrypt ed Password =
SMIP Host =
SMIP User Nane =
Encrypted SMIP Password =
SMIP Aut henti cation = true

Overview --- 19

VAl Example

Mai | Check Interval
Def aul t Reci pi ent
Domai n Nane

30000

20 --- Vocera Administration Interface Guide

Working With Entities

The section describes how to work with VAI entities. A VAI entity provides
object-oriented access to data on the Vocera server. VAl implements classes you
can use to work with entities (such as users and groups), one at a time or in
sets. For example, in the following code fragment a User Set object stores a list
of all users on the Vocera system. A User object represents the first user in that
list, and enables a call to the get User | D() method implemented by the User
class.

Example 3. UserSet and User example

User Set uSet = User.getUsers(nyVai);
if (uSet.size() > 0) {
User u = uSet. el enent At (0);
String sUserl D = u.getUserl I);
System out. println(sUserlD);

}

User. get User s() is a static method. It returns a set that lists the users in the
Vocera database. The nyVai parameter represents an instance of the VAl class
initialized elsewhere. The example gets the set of Vocera users, retrieves the first
user in the set, gets the user ID, and then prints the user ID.

Entity Operations

This section describes operations you can perform on VAl entities.

Creating Entities

Every class that extends Ent i t y provides a cr eat e() method that has the
following signature:

create(VAl vai, KeyedPropertySet ps)

Working With Entities --- 21

Querying Entities

The cr eat e() method for each class returns an instance of that class. The vai
parameter represents a connection to the Vocera server (typically instantiated
by your application class), and the ps parameter stores the key-value pairs that
define properties for the class instance you are creating. Note that for each
entity type there are some required properties. For example, the property set
required to create a user is different from the property set required to create a
location, as shown in the following code listing.

Example 4. Property sets used to create users and locations

try {
KeyedPr opertySet kpsUser = new KeyedPropertySet (nmyVai);

kpsUser. put String("User ID', "jruth");
kpsUser. put String("First Nane", "Jorge");
kpsUser. put String("Last Nane", "Ruth");
kpsUser. put String("Password", "sultan");
User u = User.create(nyVai, kpsUser);

KeyedPr opertySet kpsLoc = new KeyedPropertySet (nyVai);
kpsLoc. put String("Nanme", "Cafeteria A");
Location |l oc = Location. create(nyVai, kpsLoc);
} catch (VAI Exception ve) {
System out. println(ve. get Message());

}

This code assumes that myVai is a VAI object that has been instantiated and
used to open a connection to a Vocera Server. Each entity class is defined by a
specific set of required, optional, and default properties. The properties required
to create a location are different from those required to create a user.

Querying Entities
Each entity class implements methods for querying property values specific
to that class. Many entity classes also provide static methods that return data
about the collection of those class instances as they exist in a Vocera database.
For example, the following code gets information about the users in a group.

Example 5. Querying an entity
public void printGouplnfo() {

try {
G oup gGoup = G oup. get G oupWt hName(nmyVai ,
"Doctors",
"Cupertino");

EntitySet esMenbers = gG oup. get Menbers(fal se);
Entity e = null;
String sCurrName = "";
for (int i =0; i < esMenbers.size(); i++) {
e = esMenbers.entityAt(i);
switch (e.getType()) {

22 -+ Vocera Administration Interface Guide

Updating Entities

case Entity.tyG oup:
Goup g = (Goup) e;
sCurrNane = "[Goup] " + g.getNane();
br eak;
case Entity.tyUser:
User u = (User) e;
sCurrNane = "[User] " + u.getFirstNanme() +
" " + u.getlLastNane();
br eak;
defaul t:
sCurrName = "No name";
br eak;
}
System out . printl n(sCurrNane);

} catch (VA Exception ve) {
System out. println(ve. get Message());

}
}

The get G oupW t hNamre() method returns a group with a specified name and
site. The get Menber s(f al se) method call specifies that both direct members
and indirect members (that is, users who belong to nested groups) are returned.
The example prints the names of the members, whether they are groups or
users.

Updating Entities

In contrast to APIs that provide accessor methods in pairs (such as get Nanme()
and set Nane()), in VAl you update entities by setting values in property sets.
Classes that extend Ent i ty inherit the updat e() method. The following code
updates the description of a location with the string "NICU Nurse Station".

Example 6. Updating the description of a location

try {
KeyedPr opertySet kps = new KeyedPropertySet (nyVai);
kps. put String("Description", "N CU Nurse Station");
Location loc =
Locati on. get Locat i onW t hNane(nyVai ,
"Nl CU Nurses"
"Cupertino");
| oc. updat e(nmyVai, kps);
} catch (VAI Exception ve) {
System out. println(ve. get Message());

Working With Entities --- 23

Deleting Entities

Deleting Entities

Use a KeyedPr opert ySet object to store the key-value pairs that you want to
update. When you update an entity, the set should contain only the properties
that you want to update. For example, when you need to change a user's last
name, create and submit a property set that contains only one key-value pair:
the key "Last Name" and the new value for the user's last name. If any property
values contained in the KeyedPr opert ySet are invalid, the updat e()

method fails and throws an exception.

Do not fetch a set of all the user's properties, enter a new last name, and then
submit the entire set. You might overwrite changes made by someone else,
either through a console or another VAl instance, that were made between your
fetch and your post.

For more information about using property sets to update entities, see
Working With Properties on page 51.

The Ent i ty class provides a del et e() method you can use to delete any
entity from the Vocera database. For example, the following code deletes a
user.

Example 7. Deleting a user

try {
User u = User.getUserWthUserl| D(nyVai, "visitor04");

u.delete();
} catch (VAI Exception ve) {

System out. println(ve. get Message());
}

The Enti ty. del et e() method deletes all data pertaining to an entity from
the Vocera system. However, the deletion does not occur immediately. To ensure
that no call activity is interrupted, the deletion takes effect when the system has
no calls or Genie sessions in progress or after the server is restarted.

In contrast, the following code removes a user from a group, but that user's
data remains in the Vocera database.

Example 8. Removing members from a group

try {
User u = User.getUserWthUserl D(nyVai,
"visitor04");
G oup g = G oup. get G oupW t hNane(nyVai ,
"Visitors",

"Headquarters");
g. removeMenber (u);
} catch (VAI Exception ve) {

24 -+ Vlocera Administration Interface Guide

Using Internal Names

System out. println(ve. get Message());

}

Using Internal Names

Vocera entities do not necessarily have unique names. For example, there may
exist several users or address book entries with the same first and last names,
even within the same site. Moreover, such "external" names may change as a
result of Administration Console edits or VAI calls. For this reason, each entity
has a unique identifier, called an internal name, that is created automatically
by the Vocera server when the entity is created. This internal name is invariant
over the lifetime of the entity, and may therefore be used externally, such as in
databases, to designate the entity.

Note: You should not expect users of your VAI client to know anything about
Vocera internal names. Therefore, you should avoid using internal names in
your client's Ul.

The following code example shows how the Vocera system creates and uses
internal names for users who have the same first and last names.

Example 9. Getting internal names for entities

try {
KeyedPropertySet kpsl = new KeyedPropertySet (nyVai);

kpsl.putString("First Nanme", "Ted");
kpsl. put String("Last Nane", "Doe");
kpsl.putString("User ID', "teddoel");

User ul = User.create(nyVai, kpsl);

Systemout.println("Internal name for teddoel: " +
ul. get | nternal Nane());

KeyedPropertySet kps2 = new KeyedPropertySet (nyVai);

kps2. put String("First Nanme", "Ted");

kps2. put String("Last Nane", "Doe");

kps2.put String("User ID', "teddoe2");

User u2 = User.create(nyVai, kps2);
Systemout.println("Internal name for teddoe2: " +
u2. getlnternal Nane());

User Set uSet = User.get Users(myVai);

int i = uSet.findFirstMtch("Doe, Ted");

Systemout.printIn("First match: " +
uSet.entityAt(i).getlnternal Name());

i = uSet.findLast Match("Doe, Ted");
Systemout.println("Last match: " +

uSet . entityAt(i).getlnternal Name());
ul. del ete();

Working With Entities --- 25

Working with Addresses

u2.del ete();
} catch (VAI Exception ve) {
System out. println(ve. get Message());

}

The fi ndFi rst Mat ch() and fi ndLast Mat ch() methods used in the
example are also useful for implementing a find-as-you-type feature in a user
interface.

The example code prints the following output.

Internal nane for teddoel: u-tdoe
Internal nanme for teddoe2: u-tdoeO
First match: u-tdoeO

Last match: u-tdoe

Working with Addresses

Use the Addr ess class to work with Address Book entries. The Vocera address
book is a convenient way for badge users to contact places and people who are
not badge users. For example, if people in your organization frequently need to
contact local businesses, you can enter the business names and nicknames in
the address book. Then, getting a price quotation from Northwestern Hardware
can be as simple as using the badge to say "Call Northwestern."

Addresses are identified by names: one name for a place (for example,
"Northwestern"), two names for a person (first and last, for example, "Jane
Doe"). Therefore, in addition to the methods for standard entity operations, the
Addr ess class provides methods for determining the type (i sPl aceNane()),
and for working with names (get Pl aceName(), get Fi r st Name(),

get Last Name()). Also, the methods get Addr essW t hName() and

get Addr essesW t hNane() are overloaded to return an Addr ess or an

Addr essSet object, respectively, given various combinations of place names,
first and last names, and site names.

The following code example returns a string describing the Address objects
defined for a specified site (or for all sites, if a site is not specified).

Example 10. Getting addresses for a site

public String get AddressNanes(String sSite) {
String sCurrSite = ""
String sResult = "";

String sCurrLastName = "No | ast nanme";
String sCurrFirstNane = "No first nanme";
try {

AddressSet asSet = Address. get Addresses(nmyVai, sSite);
if (asSet.size() > 0) {
for (int i =0; i < asSet.size(); i++) {

26 --- Vlocera Administration Interface Guide

Working with Buddies and Contacts

Address addr = asSet. el ement At (i);
sCurrSite =
(sSite.equal s("") || sSite == null)
? addr.getSiteNane() : sSite;
if (addr.isPlaceName()) {
sCurrLast Name = addr. get Pl aceNane();
sResult = sResult + "\n" +
"[Type] Place " + "\t" +
"[Name] " + sCurrlLastNanme + "\t" +
"[Site] " + sCurrSite;
} else {
sCurrFirstName = addr.getFirstNane();
sCurrLast Nane = addr. get Last Nane() ;
sResult = sResult + "\n" +
"[Type] Person " +"\t" +
"[Last Nane] " + sCurrlLastName +"\t" +
"[First Nane] " + sCurrFirstName +"\t" +
"[Site] " + sCurrSite;
}
}

} else {
sResult = "There are no Addresses in the database.";

}
} catch (VA Exception ve) {
sResult = ve. get Message();
}

return sResult;

}

The i sPl aceName() method finds out whether the Addr ess object
represents a person or a place. Internally, place names are stored in the Last
Name field, with First Name field empty. When the Addr ess object represents
a person, you can call get Last Name() and get Fi r st Nanme() . When the
Addr ess object represents a place, call get Pl aceNane() instead. You could
also query the Address's property set for the values of the First Name and Last
Name properties.

Working with Buddies and Contacts

A Vocera buddy is similar to an address book entry, in that it stores contact
information. However, an address book entry represents a person or place
outside of the Vocera system, while a buddy can be a badge user, a Vocera
group, a Vocera address book entry, or a person or place outside the Vocera
system. Also, address book entries are defined for entire sites (or the Global
site), while buddies are defined for individual badge users. Buddies enable the
use of nick names in prompts and voice commands (for example, "Call the Big
Kahuna").

Working With Entities --- 27

Working with Buddies and Contacts

There are two types of buddies: inside buddies and outside buddies.

¢ An inside buddy represents another badge user, a group, or an address book
entry. Badge users can contact inside buddies the same way they contact
anyone with a badge. You can assign each buddy a special ring tone that
plays when the badge user receives a call from that buddy. Also, inside
buddies can be given VIP (very important person) status, enabling them to
contact a badge user even when that badge user is blocking calls or is in Do
Not Disturb mode.

¢ An outside buddy is someone who is not already represented in the Vocera
database as a badge user, group, or address book entry. A badge user can
contact an outside buddy by calling a telephone from a badge, or by sending
an email message from a badge to an email account.

Vocera users can create and manage buddy lists as described in the Vocera
User Console Guide. In VAI, you use the following classes to administer buddies
programmatically:

e The Cont act class represents an outside buddy as a VAI entity. Use the
Cont act class to create and delete outside buddies, specifying basic contact
information (such as name, phone number) in a KeyedPr opert ySet .

Unlike some other entity classes, the Cont act class has some properties
that VAl cannot update. To get a complete list of all Cont act properties
(read/write and read-only), call get Pr oper t yKeys() . To get a list of
read/write properties (for example, to display in a Ul for editing), call

get Propert yKeysFor Updat e() .

* The User class provides a means for updating a user's buddy list. Each User
object has a Buddies, an indexed set in which each element is itself a keyed
set that contains a Cont act object or a User object along with properties
including nick name and VIP status.

The following code example creates an outside buddy (contact) and adds it to
an existing badge user's buddy list.

Example 11. Adding a contact

public static int addContact() {
int i ResultCode = -1;
try {
/1 Find the existing user.
User u = User.getUserWthUserl D(nyVai, "rhall");

I/ Properties for a new Contact.
/1 A Contact represents an outside buddy.
KeyedPr opertySet kpsNewContact =

new KeyedPr opertySet (nyVai);

28 -+ Vocera Administration Interface Guide

Working with Buddies and Contacts

kpsNewCont act . put Stri ng("Last Name", "Davis");
kpsNewCont act . put String("First Name", "MI1s");
kpsNewCont act . put St ri ng(" Desk Phone", "408-555-1234");
kpsNewCont act . put User (" Omner", u);

Cont act cNewCont act =
Cont act. create(mnmyVai, kpsNewContact);

/1 Properties (including the new Contact) for a new Buddy.
KeyedPr opertySet kpsNewBuddy =
new KeyedPr opertySet (nyVai);
kpsNewBuddy. put Cont act (" Nane", cNewContact);
kpsNewBuddy. put String("N ck Nane", "New outside buddy");

/1 Add the new Buddy to the user's existing set.
KeyedPropertySet kpsUser = u.getProperties();
| ndexedPr opertySet ipsBuddies =
kpsUser. get | ndexedSet (" Buddi es") ;
i psBuddi es. add(kpsNewBuddy) ;

/1 Update the user with new property set.
KeyedPropertySet kpsUpdate =

new KeyedPr opertySet (nyVai);
kpsUpdat e. put Set (" Buddi es", i psBuddi es);

u. updat e(myVai, kpsUpdate);

i Resul t Code = O0;
} catch (VAI Exception ve) {
System out. println(ve. get Message());
i Resul t Code = ve. get Resul t Code();

}
return i Resul t Code;

}

The following code example adds an existing badge user to another badge
user's buddy list.

Example 12. Adding an inside buddy

public static int addlnsideBuddy() ({
int i ResultCode = -1;
try {
/1 Search for inside buddy.
User uBuddy = User.getUserWthUserl| D(nyVai, "ndavis");

/1 Properties for a new | nside Buddy.
KeyedPr opertySet kpsNewBuddy =
new KeyedPr opertySet (nyVai);
kpsNewBuddy. put User (" Nane", uBuddy);
kpsNewBuddy. put String("N ck Nane", "New inside buddy");

/'l Search for owner.

Working With Entities --- 29

Working with Devices

User uOmner = User.getUserWthUserl D(nyVai, "rhall");

/1 Add the new Buddy to the user's existing set.
KeyedPr opertySet kpsUser = uOaner. getProperties();
I ndexedPr opertySet i psBuddies =

kpsUser . get | ndexedSet (" Buddi es") ;
i psBuddi es. add(kpsNewBuddy) ;

/1 Update the user with new property set.
KeyedPr opertySet kpsUpdate =

new KeyedPr opertySet (nyVai);
kpsUpdat e. put Set (" Buddi es", i psBuddi es);

uOnner . updat e(nyVai, kpsUpdate);

i Resul t Code = O0;
} catch (VAI Exception ve) {
System out . println(ve. get Message());
i Resul t Code = ve. get Resul t Code() ;
}

return i Resul t Code;

}

Working with Devices

Use the Devi ce class to work with Vocera devices, such as badges. You can
manage and track the devices that connect to the Vocera system.

Creating a Device

To create a device, use the Devi ces. creat e() method. The only required
property for devices is the MAC Address property, a 12-character string.

Note: Vocera automatically adds new devices to the system when they connect
to the server, so you rarely will need to create a device using VAI. Instead, use
VAl to update device information.

Example 13. Creating a device

public static void createNewDevice(String sMACAddr){
try {
KeyedPr opertySet kpsDevice = new KeyedPropertySet (nyVai);
kpsDevi ce. put Stri ng(" MAC Address", sMACAddr);
Device d = Device.create(myVai, kpsDevice);
} catch (Exception ex) {
System out . pri ntl n(ex. get Message());
}
}

For more information about creating entities, see Creating
Entities on page 21.

30 -+ Vocera Administration Interface Guide

Updating a Device

Updating a Device

Getting Devices

As part of your device management practices, the System Device Manager
should input information for each Vocera badge. This information will allow you
to manage and track the badges that connect to the Vocera system.

Example 14. Updating a device
//inport java.text.*;

public static void updateDevi ce(Device d){

try {
Dat eFormat df = new Si npl eDat eFor mat (" MM dd/ yyyy");

Il ong | Tracking = df.parse("11/30/2013").getTine();

Site siteSC = Site.getSiteWthNane(nyVvai, "Santa Cruz");

G oup gEDN = Group. get G oupW t hNanme(nmyVai, "E D Nurse",
"d obal ");

KeyedPropertySet kpsDevice = new KeyedPropertySet (nyVai);
kpsDevi ce. put String("Serial No", "A2AMD70505D4");
kpsDevi ce. put String("Status", "Active");
kpsDevi ce. put G oup(" Oamni ng G oup", geDN) ;
kpsDevi ce. put Long(" Tracki ng Ti ne", | Tracki ng);
kpsDevi ce. putSite("Site", siteSC);
kpsDevi ce. put Bool ean(" Shared", false);
d. updat e(nmyVai, kpsDevi ce);

} catch (Exception ex) {
System out. pri ntl n(ex. get Message());

}

}

The serial number for a device must be consistent with the device's MAC
address. Otherwise, the updat e() method will fail and throw an exception.

For more information about updating entities, see Updating
Entities on page 23.

The Devi ce class provides several methods for getting devices. There are
different methods for retrieving a set of devices and for retrieving a single
device.

You can use the following methods to return a set of devices. Each of these
methods returns a Devi ceSet object, which provides methods to manipulate
the set.

Working With Entities --- 31

Getting Devices

Table 4. Methods for retrieving a set of devices

Method

Description

get Devi ces(VAl vai)

Returns the set of all devices.

get Devi ces(VAl vai,
java.lang. String sSiteNanme)

Returns the set of devices for a
given site.

get Devi cesW t hLabel (VAI vai,
java.lang. String sLabel)

Returns the set of devices with a
specified label.

get Devi cesW t hOaner (VAl vai ,
Group gOaner)

Returns the set of devices with a
specified owning group.

get Devi cesW t hOmner (VAl vai ,
G oup gOmwner, java.lang.String
sSi t eNane)

Returns the set of devices with
a specified owning group at a
particular site.

Table 5. Methods for retrieving an individual device

Method

Description

get Devi ceW t hl nt er nal Nane(VAI
vai, java.lang. String
sl nt er nal Nane)

Returns the device with the specified
internal name.

get Devi ceW t hMACAddr (VAl vai ,
java. |l ang. String sMACAddr)

Returns the device with the specified
MAC address.

get Devi ceWt hSeri al No(VAl vai,
java.lang. String sSeri al No)

Returns the device with the specified
serial number.

Example 15. Getting devices

public static void get SCDevi ces(){

try {
Devi ce d;

//Cet the devices at the Santa Cruz site
Devi ceSet dsSC = Devi ce. get Devi ces(nyVai, "Santa Cruz");
for (int i =0; i < dsSC. size(); i++) {

d = dsSC. el ement At (i);

/IPrint the MAC address of each device at Santa Cruz
Systemout. println("MAC Address: " +
d. getNane());

[/Print the serial nunber of each device
Systemout.printin("Serial No: " +
d. get Serial No());

32 - Vocera Administration Interface Guide

Getting the Color or Type of a Device

}catch (Exception ex) {
System out . printl n(ex. get Message());

}
}

Getting the Color or Type of a Device

Vocera devices are either white or black. All BT000A badges are

black. B2000 badges can be black or white. You can use the

Devi ce. get Col or FronSeri al No() method to determine the color of a
device based on its serial number.

A Vocera device can be one of three types: B2000, B1000A, or an unknown
type. The Devi ce class provides integer constants to represent these types.
You can use these constants as the parameter value for get Devi ceType(i nt
i Type) to return a localized String representation of the device type.

The following example shows how to get the color and type of a device.

Example 16. Getting the color and type of a device

public static void getCol or AndType(Devi ce d){

try {
/1 Get the color of the device

String sCol or = d. getCol or FronSeri al No(d. get Seri al No());
//Print the color
System out. println(sCol or);

/1 Get the device type of the device

String sType = Device. get Devi ceType(d. get Devi ceType());
//Print the device type

System out. println(sType);

}catch (Exception ex) {
System out . printl n(ex. get Message());
}
}

Modifying Device Status Choices

Vocera provides a list of default status values for devices, such as
"Unregistered,” "Inventory," and "Active." However, you can define your
own status choices based on the device management processes you have
implemented.

The following example shows how to add, delete, and rename a device status.

Example 17. Modifying device status choices

public static void nodifyStatuses(){

try {
//Add a new status called "Assigned"

Working With Entities --- 33

Uploading Badge Logs

Devi ce. addSt at usChoi ce(nyVai, "Assigned",
"Badge has been assigned to a group.");

// Renove the status "Active" and replace it with "Assigned"
Devi ce. renpveSt at usChoi ce(nyVai, "Active", "Assigned");

/| Change the name of status "Received for Repair"
//to "In Repair"
Devi ce. renaneSt at usChoi ce(nyVai, "Received for Repair",
"I'n Repair", "System Device Manager has received
the Vocera device for diagnosis and repair.");
}catch (Exception ex) {
System out. pri ntl n(ex. get Message());
}

}

Uploading Badge Logs

If you know the MAC address of a badge that is connected to the Vocera
Server, you can use the Devi ce. upl oadBadgelLogs() method to upload
the logs from the badge to the Vocera Server for troubleshooting purposes.
To get the MAC address for the badge currently associated with a user,

you can use the User . get BadgeSt at us() method. If you already know
the MAC address of a badge, you can get the associated user by using the
User. get User Wt hMACAddr () method.

Note: The upl oadBadgeLogs() method is not supported on B1000A badges
and Vocera smartphones.

The badge assembles logs files into a single .tar.gz file and uploads the file to
the \vocera\logs\BadgeLogCollector\uploads directory on the Vocera Server.
The format of the filename is DATETI ME- USERNAMVE- BADGEMAC-udd.tar.gz.

The following example shows how to upload badge logs.

Example 18. Uploading badge logs

public static void upl oadBadgeLogs(VAlI nyVai, String userlD){
int i ResultCode = -1;
String nacAddr = ""
try
{
BadgeSt at us[] bsa
BadgeSt at us bsQbj
for (int i =0; i
bsbj = bsalil];
User uTenp = bsObj. u;
if (uTenp.getUserl X).equal s(userlD)) {
macAddr = bsObj . sMACAddr ;
br eak;

}

User . get BadgeSt at us(vai) ;
nul | ;
bsa.length; i++) {

A

34 --- Vlocera Administration Interface Guide

Working with Groups

}
if (!macAddr.equal s("")) {
Devi ce. upl oadBadgelLogs(nyVai, macAddr);
if (i ResultCode == -1) {
System out. println("Badge | ogs were upl oaded.");

} else {
Systemout.printin("Error: " + userlD +
" is not logged into a B2000 or B3000 badge.");
}
catch (VAI Exception e)

{
i Resul t Code = e. get Resul t Code();

System out. printl n(e. get Message());
}
}

Working with Groups

Use the Gr oup class to work with Vocera groups. Vocera groups organize users
into roles such as Floor Manager, Cashier, Nurse, Cardiologist, Executive, and so
forth. Groups provide a way to leave messages for many users at once ("Send a
message to Nurses Assistants"), or to call someone who fits a specific role (" Call
a sales person"), belongs to a certain department (" Call Accounts Receivable"),
or has some other skill or authority that the caller requires (" Call a manager").

See the Vocera Administration Guide for complete information about groups.

Getting Subgroups

A group can have multiple levels of subgroups contained within it. To work
with subgroups, the Group class provides the get Subgr oups() method.

This method takes one parameter, a boolean value that specifies whether to
return only immediate subgroups or all subgroups, including nested subgroups.
For example, the following figure shows the group structure for the | C U
department group, which has six subgroups. Given a parameter value of t r ue,
the get Subgr oups() method would return a set that did not include the

| C U Float Nurse subgroup because it is not a direct member of | C U. Given a
parameter value of f al se, the get Subgr oups() method would return a set
containing all six subgroups, including | C U Float Nurse.

Working With Entities --- 35

Managing Group Membership

Figure 1. Subgroups

ICU+*
~I C U Charge Nurse **
—I C U Nurse **
L1 C U Float Nurse
—I C U Nursing Assistants **
—I C U Tech **
—I C U Unit Clerk **

The following code example shows how to get all subgroups for the | C U
department group:

Example 19. Getting subgroups

voi d get| CUSubgr oups(VAI nyVai) {

try {
G oup gl CU = G oup. get G oupW t hName(nyVai, "I C U', "dobal");
GroupSet gsl CUSubs = gl CU. get Subgr oups(true);
for (int i=0; i < gslCUSubs.size(); i++) {
System out. println(gsBl CUSubs. el ement At (i). get Nane());

}
}catch (VAI Exception ve) {
System out. println(ve. get Message());
}

Managing Group Membership

Group membership can change over time, and in some environments it

can change frequently. A user can be a member of multiple groups at the
same time. An administrator can add or remove group members either with
voice commands or through the Administration Console. Users can remove
themselves from groups, and with the proper permission, they can add
themselves or other users to groups.

The Group class provides the get Menber s() method. This method takes one
parameter, a boolean value that specifies whether to return only direct group
members or direct members and members of nested groups. For example, the
following figure shows a group structure where the Employees group contains
six members: four direct members and two members in a nested group named
Managers. Given a parameter value of t r ue, the get Menber s() method
would return a set containing the four direct members. Given a parameter value
of f al se, the get Menmber s() method would return a set containing all six
members.

36 -+ Vocera Administration Interface Guide

Managing Group Membership

Figure 2. Nested groups

¥ 7 Employees
i'E'J Alex Quinn
‘@’ Rebecca North
‘[’ Ross Jones
‘[’ wesley Stritch
¥ EE Managers
"E" Amy Chen

"E" lavier Fernandez

The following code example shows how VAI can manage group membership.

Example 20. Managing groups
voi d manageG oups(VAl nyVai) {

try {

User u;
User Set us = new User Set (nyVai) ;

/1 Get the Managers group in the dobal site

G oup gMgr = G oup. get G oupW t hNarme(nyVai , "Managers", "d obal ") ;

// Get a User with the ID "jfernandez"
u = User.getUserWthUserl D(nmyVai, "jfernandez");

/1 Add jfernandez to the user set
us. add(u);

/'l Renopve jfernandez fromthe Managers group
gMgr . renoveMenber (u) ;

/] Get another User with the ID "hwang"
u = User.getUserWthUserl| D(nmyVai, "hwang");

/1 Add hwang to the user set
us. add(u);

/1 Add hwang to the Managers group
gMyr . addMenber (u) ;

/| Create a new keyed property set for a group

KeyedPr opertySet kpsG = new KeyedPr opertySet (nyVai);
kpsG put String("Name", " Techni ci ans");

Working With Entities -+

37

Managing Group Permissions

kpsG put Stri ng(" Spoken Menber Nanme", "a technician");

/] Create a new group called Technicians
G oup gTech = Group.create(nyVai, kpsQ;

/1 Add menbers fromthe user set to the group
for (int i =0; i <wus.size(); i++) {

gTech. addMenber (us. el ement At (i));
}

} catch (VAI Exception ve) {
System out. printl n(ve. get Message());
}
}

When you remove a member from a group, you do not delete the user from the
database.

Note: The G oup. updat eMenber s(EntitySet esMenbers) method
simplifies updates to group membership. This sets the members of a group
in one operation, which is more efficient than making repeated calls to
addMenber () and renmoveMenber () . All existing members of the group
are removed, and members in esMenber s are added in order. For more
information about the updat eMenber s() method, see the Javadoc for the
G oup class.

Managing Group Permissions

When you create or modify a group, you specify values for properties that
control the way the group behaves and the way users interact with it. Among
these properties are permissions, such as Call Toll Numbers, Initiate Urgent
Broadcasts, and Erase Voiceprint of Another User.

A Group object's properties include two sets: Permissions and AntiPermissions.
The Permissions set specifies the permissions that are granted to members

of that group, while the AntiPermissions set specifies permissions that are
revoked for those members even if they belong to another group that confers
the permissions. Both of these sets have the same keys, and all the values

are of type boolean. To explicitly grant a permission, set the corresponding
property in the Permissions set to t r ue. To explicitly revoke a permission, set
the corresponding property in the AntiPermissions set to t r ue, as in, "Yes,
it's true. | really want to revoke this permission." A permission cannot be
both granted and revoked for the same group simultaneously. Therefore, a
permission that has been revoked automatically overrides the granting of that
same permission.

38 -+ Vocera Administration Interface Guide

Managing Group Permissions

The complete set of permissions available to any single user is the total list
of permissions granted to all the groups of which he or she is a member.
Therefore, setting a property value to f al se in the Permissions set does not
necessarily deny that permission to a user, nor does setting a property value
to f al se necessarily grant that permission. The user may belong to other

groups for which the property has been explicitly granted or revoked. For more
information about working with permissions, see Vocera Administration Guide.

The following code example shows how VAI can explicitly grant and revoke
permissions for a group.

Example 21. Granting and revoking permissions for a group

public static int dermoPerm ssions() {
int i ResultCode = -1;
try {
Goup g =
G oup. get G oupW t hNane(nyVai, "Doctors", "d obal");

System out. println("Before");

KeyedPropertySet kpsG = g. get Properties();

KeyedPropertySet kpsP = kpsG get KeyedSet (" Perm ssi ons");
KeyedPr opertySet kpsAP = kpsG get KeyedSet (" Anti Perm ssi ons");
System out. println(kpsP.toString());

System out. printl n(kpsAP.toString());

KeyedPr opertySet kpsPernms =
new KeyedPropertySet (myVai);
KeyedPr opertySet kpsAnti Perns =
new KeyedPropertySet (nmyVai);

//Explicitly grant these perm ssions
kpsPer ms. put Bool ean(" Cal | Tol | - Free Nunmbers", true);
kpsPer ms. put Bool ean("Cal | Tol |l Nunbers", false);

//Explicitly revoke these pernissions
kpsAnti Per ms. put Bool ean(" Erase your Voiceprint", true);
kpsAnt i Perms. put Bool ean(" Record your Voiceprint", false);

KeyedPr opertySet kpsGroup =
new KeyedPr opertySet (nyVai);
kpsG oup. put Set (" Per ni ssi ons", kpsPerns);
kpsG oup. put Set (" Anti Perm ssi ons", kpsAnti Perns);

g. updat e(nmyVai, kpsG oup);
i Resul t Code = O0;

Systemout.printin("After");

kpsG = g.get Properties();

kpsP = kpsG get KeyedSet (" Per m ssi ons");
kpsAP = kpsG get KeyedSet (" Anti Perm ssi ons");
System out. println(kpsP.toString());

Working With Entities -+

39

Working with Locations

System out. println(kpsAP.toString());

} catch (VAI Exception ve) {
i Resul t Code = ve. get Resul t Code();

System out .

}

println(ve. get Message());

return i Resul t Code;

}

Working with Locations

Use the Locat i on

class to work with Vocera locations. Locations are names of
places to which you assign one or more access points. WWhen a badge connects

to an access point, the Vocera server is able to report the corresponding

location. The location names also appear in the Badge Status Monitor, replacing

the MAC address of the access point.

Locations are identified by names. Therefore, in addition to the methods for
standard entity operations, the Locat i on class provides methods that return a
Locati on or a Locat i onSet object, given various combinations of location

names, site names,

The following code example returns information about the Location objects

and internal names.

defined for a specified site (or for all sites, if a site is not specified).

Example 22. Getting location information

public String getLocationlnfo(String sSite) {

String sCurrSite = ;

String sResult

String sCurrNane

= "No nane":

nn

String sCurrDesc = ;

KeyedPr opertySet kpsLo

try {
Locat i onSet

new KeyedPr opertySet (nyVai);

| sSet Locati on. get Locat i ons(nyVai ,

if (IsSet.size() > 0) {

for (int i =0; i < IsSet.size(); i++) {
Location loc = IsSet.elementAt(i);
sCurrName = | oc. get Nanme();
sCurrSite =
(sSite.equal s("") || sSite == null)
? loc.getSiteNane() : sSite;

kpsLoc = | oc. getProperties();
sCurrDesc = kpsLoc. getString("Description");
SsResult = sResult + "\n" +
"[Nanme] " + sCurrNanme +"\t" +
"[Site] " + sCurrSite +"\t" +
"[Description] " + sCurrDesc;

}

} else {
sResult = "There are no Locations in the database.";

40 --- Vocera Administration Interface Guide

sSite);

Working with Locations

}
}catch (VAI Exception ve) {

sResult = ve. get Message();
}

return sResult;

}

The following code example shows how to create a location and set its
properties, including properties for Access Points and Neighbors.

Example 23. Creating a location

private void createlLocation() {

try {
Location |;

/1 Create a new keyed property set for a |ocation
KeyedPr opertySet kpsL = new KeyedPropertySet (nyVai);
kpsL. put Stri ng(" Name", "Lab");

kpsL. put String("Description", "Laboratory");

kpsL. putSite("Site", "s-global");

kpsL. put Stri ng(" Spoken Nane", "laboratory");

/] Create an indexed property set for access points

I ndexedPr opertySet i psAP = new | ndexedPropertySet (nmyVai);
i psAP. add(" 00008A886356") ;

i psAP. add(" 00004A556454") ;

kpsL. put Set (" Access Poi nts", ipsAP);

/1 Create an indexed property set for neighbors

I ndexedPr opertySet i psN = new | ndexedPropertySet (nyVai);

| = Location. getLocati onWthNane(nmyVai, "Qaknont", "d obal");
i psN. add(I);

| = Location. getLocati onWthNane(nmyVai, "Spyglass", "dobal");
i psN. add(I);

kpsL. put Set (" Nei ghbors", ipsN);

/] Create the location
Location | Lab = Location.create(mnmyVai, kpslL);

} catch (VAI Exception ve) {
System out. println(ve. get Message());

Working With Entities --- 41

Working with Sites

Working with Sites

Use the Si t e class to work with Vocera sites. In Vocera, a site is a distinct
physical location that shares a centralized Vocera server with one or more other
physical locations. Site profiles associate users and groups with specific physical
locations.

Sites are identified by names. Therefore, in addition to the methods for
standard entity operations, the Si t e class provides methods that returna Site
ora SiteSet object, given various combinations of site names and internal
names.

Unlike some other entity classes, the Si t e class has some properties that VAI
cannot update. To get a complete list of all Si t e properties (read/write and
read-only), call get Propert yKeys() . To get a list of read/write properties (for
example, to display in a Ul for editing), call get Pr opert yKeysFor Updat e() .

The Si t e class also provides methods for moving entities between sites. The
moveEntiti esToSite() method is overloaded, enabling you to move all
entities from one site to another, or to specify a set of entities to move. The
following code example moves a group and all of its members to another site.

Example 24. Moving a group to another site

public int transferGoup(String sG oupNane,
String sFronSite,
String sToSite)

int i ResultCode = -1;
try {
Goup g =
G oup. get G oupW t hNane(nyVai, sG oupNane, sFronSite);
EntitySet es = g.get Menbers(false);
es. add(g);
Site siFrom= Site.getSiteWthName(nyVai, sFronSite);
si From noveEntiti esToSite(es, sToSite);
i Resul t Code = O0;
} catch (VA Exception ve) {
i Resul t Code = ve. get Resul t Code();
}

return i Resul t Code;

42 --- Vlocera Administration Interface Guide

Working with Sites

Many Si t e object properties configure telephony properties for a site, and

so enable programmatic access to the features of the Telephony screen in the
Administration Console. As in the Administration Console, many telephony
properties cannot be modified through VAI unless telephony is enabled. For
example, suppose that you want the Telephony server to omit the area code
from the dial string when placing a local call. Using the Administration Console,
you would perform the following steps.

1. Display the Basic Info page of the Telephony screen.

2. Verify that Enable Telephony Integration is selected (checked).

3. Display the Access Codes page of the Telephony screen.

4. Verify that Omit Area Code when Dialing Locally is selected (checked).
5. Save changes, if necessary.

The following code example shows the corresponding steps in VAI.

Example 25. Omitting the area code from the dial string

public static int omtAreaCode(String sSiteName) {
int i ResultCode = -1;
try {
Site si = Site.getSiteWthNane(nyVai, sSiteNane);
KeyedPropertySet kpsSite = si.getProperties();
KeyedPropertySet kpsTel Info =
kpsSite. get KeyedSet (" Tel ephony | nfo");
bool ean bTel Enabl ed =
kpsTel | nf 0. get Bool ean(" Tel ephony Enabl ed");
KeyedPr opertySet kpsNewTel Info =
new KeyedPr opertySet (nyVai);

if (bTel Enabl ed == fal se) {
kpsNewTel I nf 0. put Bool ean(" Tel ephony Enabl ed", true);
KeyedPr opertySet kpsUpdate = new KeyedPropertySet (nyVai);
kpsUpdat e. put Set (" Tel ephony | nfo", kpsNewTel | nfo);
si . updat e(nmyVai, kpsUpdate);

}

kpsNewTel | nf 0. put Bool ean(" Seven Digit Dialing", true);
KeyedPr opertySet kpsUpdate = new KeyedPropertySet (nyVai);
kpsUpdat e. put Set (" Tel ephony I nfo", kpsNewTel I nfo);

si . updat e(nyVai, kpsUpdate);

i Resul t Code = 0;
} catch (VAI Exception ve) {
i Resul t Code = ve. get Resul t Code();

}

return i Resul t Code;

}

Working With Entities --- 43

Working with Users

Working with Users

Identifying Users

Adding new users to the system and updating information for existing users
are two primary tasks of a Vocera system administrator. When you add a user
(or when a user self-registers), the Vocera system creates a profile for that user
in the Vocera server database. Use the User class to work with Vocera user
profiles.

After a user has had some time to work with the badge, you may need to edit
the user’s profile to add features that may be useful or remove features that the
user does not want. In addition to a user’s name and contact information, the
profile stores user preferences, such as which Genie persona will prompt the
user, whether warning tones are played when the badge has a low battery, or
when the user has a new voice or text message.

Unlike some other entity classes, the User class has some properties that
VAl cannot update. To get a list of User properties that you can read, call
get Proper t yKeys() . To get a list of properties that you can modify (for
example, to display in a Ul for editing), call get Pr oper t yKeysFor Updat e() .

Note: For security reasons, password properties cannot be read but they can
be updated.

Users are identified by names. Therefore, in addition to the methods for
standard entity operations, the User class provides methods for working
with names (get Fi r st Name(), get Last Nane()). Also, the methods

get User Wt hName() and get User sWt hName() are overloaded to return
a User oraUser Set object, respectively, given various combinations of first
names, last names, and site names.

Because it's not uncommon for two or more users to have the same first and
last names, the User class provides the following methods for distinguishing
between users:

Table 6. Methods for distinguishing between users

Method Description

get User Wt hMACAddr (VAl vai , Returns user with a given MAC

java. |l ang. String sMACAddr) address, or null if no such user
exists.

get User Wt hUser | D(VAl vai, Returns user with a given User ID, or

java. lang. String sUserl D) null if no such user exists.

44 --- Vlocera Administration Interface Guide

Users and Group Membership

Method Description

get User Wt hl nt er nal Name(VAI Returns user with a given internal
vai, java.lang.String name.

sl nt er nal Nane)

Users and Group Membership

To find out which groups a user belongs to, call the get Cont ai ni ngG oups()
method. This method takes a boolean argument that specifies whether to
return only those groups of which the user is an immediate (direct) member, or
to return all the groups of which the user is a member.

For example, suppose that the user Jane Doe is a member of the Charge Nurses
group, and the Charge Nurses group is a member (subgroup) of the Nurses
group. A call to get Cont ai ni ngG oups(true) would return only the Charge
Nurses group, while a call to get Cont ai ni ngG oups(f al se) would return
both the Charge Nurses group and the Nurses group.

The following code example prints the names of containing groups for a user
specified by user ID.

Example 26. Getting groups for a user

public int getGoupsForUser(String sUserlD,
bool ean bl nmedi ate) {
int iResultCode = -1;
try {
User u = User.getUserWthUserl D(nyVai, sUserlD);
G oupSet gs = u.get Cont ai ni ngG oups(bl medi ate) ;
G oup gTenp = null;
for (int i =0; i < gs.size(); i++) {
gTenp = gs.element At (i);
System out. println(gTenp. get Nanme());

}
i Resul t Code = 0;
} catch (VAI Exception ve) {
i Resul t Code = ve. get Resul t Code();

}

return i Resul t Code;

}

When the value of the bl medi at e parameter of get Cont ai ni ngG oups()
is true, the method retruns only those groups in which the user is a direct
member. Otherwise, it returns all the groups in which the user is a member.

Working With Entities --- 45

Badge Users and Badge Status

Badge Users and Badge Status

The User class also provides get BadgeSt at us(), a static method that returns
status information about every user who is currently logged in and online. This
method returns an array of BadgeSt at us objects, where each BadgeSt at us
object has the public fields defined in the following table.

Note: The get BadgeSt at us() method returns an array that contains a
BadgeSt at us object for every user who is currently logged in and online.
Therefore, when a large number of users are online, the resulting array is large,
too.

Table 7. BadgeStatus fields

Name Type Description

u User Represents a badge user.

sIPAddr String Dotted form of the user's IP address.

sLocation String Name of the user's current location.

bDND boolean True if the user is in Do Not Disturb mode.

bHold boolean True if the user is has a call on hold.

sCallState String Current call state. One of: Inactive, Call,
Genie, Conference.

siLocalSite Site Represents the user's current site.

sMACAddr String MAC address of the device.

The following code example uses the get BadgeSt at us() method and a
BadgeSt at us object to get the name of the location with which a specified
badge user is associated, if that user is online.

Example 27. Getting the current location for a badge

public String getUserLocation(String sUserlD) {
String sLoc = "";
try {
BadgeSt at us[] bsa
BadgeSt at us bsObj
for (int i =0; i
bsObj = bsa[i];
User uTenp = bsbj. u;
if (uTenp. getUserl D().equal sl gnoreCase(sUserlD)) {
sLoc = bsbj.slLocati on;
br eak;

User . get BadgeSt at us(nmyVai) ;
nul | ;
bsa.l ength; i++) {

NI

46 --- Vocera Administration Interface Guide

Importing User Data

} else {
sLoc = sUserID + " is not online.";

}

} catch (VAI Exception ve) {
sLoc = ve. get Message();

}

return sLoc;

}

Importing User Data

This section describes one way to import user data from an external database
into the Vocera database. Several aspects of this sample have been simplified
for clarity. For example, table structures and relationships are likely to be more
complex in a production environment. Similarly, the Java code omits details such
as error checking.

The following code example queries an external MySQL database using JDBC,
then uses the results to create users in the Vocera database.

Example 28. Importing users from an external database

import java.sqgl.*;
import vai.*;

public class DbDenp {
public static VAl nyVai = new VAI();

private class MyVai Li stener inplenents VAIListener {
public voi d handl eServer St at eChange(int i State) {
System out. println("Handling Vocera server state change: "
+ VAl . get ServerStateString(i State));

public void handl eReportStatus(String sTitle,
int iStatus,
String sStatus,
i nt i PercentDone,
String sError)

{

Systemout.println("Reporting a server status change.");
}
} /1 MyVai Li st ener
public MyVai Li stener nyL;

public DbDeno() {
nyL = new MyVai Li stener();
}

/| Database connnection paraneters.

Working With Entities --- 47

Importing User Data

/'l Replace themw th values for your database.
static String sHost = "host";

static String sDbName = "dat abase";
static String sUsernane = "user";
static String sPassword = "password";

// Build a JDBC connection string.

/1 Val ues shown are for MySQL.

static String sThinConn = "jdbc:nysql://" +
sHost + "/" + sDbNaneg;

/1 Edit this value for a database other than MySQ..
static String sDriverNane = "com nysql .jdbc. Driver";

public static void main(String[] args) {
DbDenp denp = new DbDeno();

try {
/'l Repl ace vs_nane with your Vocera server host nane.

nmyVai . open("vs_nane",
"Adm ni strator",
"adm n",
deno. nylL) ;

/| Connect to the database.
Cl ass. for Nane(sDri ver Narme) . newl nst ance() ;
Connection conn =
Dri ver Manager . get Connecti on(sThi nConn,
sUser nane,
sPassword) ;
/1 Define and execute a query.
Statenment stnt = conn.createStatenment();
String query =
"sel ect e.UserlD, e.FirstNanme, e.LastNanme, " +
"d. CostCenter " +
"fromEWP e, DEPT d " +
"where e.DeptID = d. I D";

Resul t Set rs = stnt.executeQuery(query);

I/ Use query results to create Vocera users.
KeyedPr opertySet kpsUser = null;
User u = null;
while (rs.next()) {
kpsUser = new KeyedPropertySet (nyVai);
kpsUser. put String("User ID",
rs.getString("UserlD"));
kpsUser. put String("First Name",
rs.getString("FirstName"));
kpsUser. put String("Last Nane",
rs.getString("LastName"));
kpsUser. put String("Cost Center",

48 --- Vocera Administration Interface Guide

Importing User Data

rs.getString("CostCenter"));
/1 Assign a default password.
kpsUser. put String("Password", "vocera");

u = User.create(nyVai, kpsUser);
Systemout.println("Created user: " +
rs.getString("UserlD"));
}
// Close database connection.
conn. cl ose();

} catch (VAI Exception ve) {
Systemout. println("VA Exception: " + ve.getMessage());
} catch (Exception e) {
e.printStackTrace(System out);
}
/1 Close VAl connection.
nmyVai . cl ose();
}
}

The sample external database contains tables named DEPT and EMP created by

the following SQL code.

Example 29. SQL code for an external database

DROP TABLE | F EXI STS " DEPT;

CREATE TABLE " DEPT (
“ID int NOT NULL,
“Name®™ varchar (50) NOT NULL,
“CostCenter” int default NULL,
UNIQUE KEY "ID ('ID)

) ENG NE=I nnoDB DEFAULT CHARSET=l ati nl;

DROP TABLE | F EXI STS "EMP;
CREATE TABLE "EMP" (
“User| D varchar (70) NOT NULL,
“Last Nane™ varchar (50) NOT NULL,
“FirstName™ varchar (50) NOT NULL,
“DeptI D int default NULL,
FOREI GN KEY (" Dept|l D) REFERENCES DEPT('I1D)
ON DELETE CASCADE,
UNI QUE KEY “UserI D (" UserlD)
) ENG NE=I nnoDB DEFAULT CHARSET=l ati nl;

The DEPT table was populated by running the following SQL code.

Example 30. SQL code that populates the DEPT table

insert into "DEPT values(1l, 'Engineering , 100)
insert into "DEPT values(2, 'Mrketing' , 200)
insert into "DEPT values(3, 'QA, 101)

insert into "DEPT values(4, 'Sales', 300)

Working With Entities -+

49

Sending a Text Message

The EMP table was populated by running the following SQL code.

Example 31. SQL code that populates the EMP table

insert into "EMP values('jdoe', 'Doe', 'Jane',
insert into "EMP val ues('ndavis', 'Davis', 'MIlIls'",
insert into "EMP val ues('cparker', 'Parker',

insert into "EMP val ues('tnmonk', 'Mnk', 'Thelm',
insert into "EMP values('dgillespie', 'Gllespie',

Sending a Text Message

"Charlotte'

The User class has a sendText Message() method that sends a text message
from one user to a set of users and groups. The following example is a method
that uses sendText Message() to send a reminder to the badge of a user.

Example 32. Sending a text message

public void sendRem nder(String sUserlI D, String sMessage) {

try {
String sSubject = "Rem nder";

User u = User.getUserWthUserl D(nyVai, sUserlD);

User Set usMessageTo = new User Set (nyVai);
usMessageTo. add(u);
u. sendText Message(usMessageTo, sSubject,
} catch (VAI Exception ve) {
System out. println(ve. get Message());
}
}

For more information about the sendText Message() method, see the

Javadoc for the User class.

50 - Vocera Administration Interface Guide

Working With Properties

VAl uses collections of key-value pairs called property sets to define and
manipulate the characteristics of Vocera entities and the Vocera system. The
base class is Propert ySet, an abstract class that extends j ava. | ang. Obj ect
and defines methods inherited by the following classes:

¢ The KeyedPr opert ySet class implements methods you can use to
manipulate sets of key-value pairs where each key is a string. See Using
Keyed Property Sets on page 51.

e The | ndexedPr opertySet class implements methods you can use
to manipulate indexed sets of values. See Using Indexed Property
Sets on page 53.

Using Keyed Property Sets

A KeyedPr opert ySet object represents the attributes of a Vocera entity or
the Vocera system as a set of key-value pairs where each key is a string. For
example, the key-value pair for a user's desk extension could be:

"Desk Phone" "1234".

Each Ent i t y subclass provides a static method (for example,

User . get Proper t yKeys) that returns a String[] array containing the property
key names for that class. Also, because some entity property values cannot

be changed, each Ent i t y subclass provides a static method (for example,
User . get Proper t yKeysFor Updat e) that returns a list of the keys for
properties that can be updated. The following code prints the property key
names for the User class.

Example 33. Getting property keys

String[] saKeys = User. get PropertyKeys();
for (int i =0; i < saKeys.length; i++)
System out . printl n(saKeys[i]);

Working With Properties --- 51

Using Keyed Property Sets

The following listing shows a portion of the output returned by
User. get PropertyKeys().

User ID

Passwor d

Last Nane

Fi rst Nane

Al't Spoken Names
Al't Spoken Nanes. *
| dent Phrase

Emai | Address

Buddi es

Buddi es. *
Buddi es. *. Nane
Buddi es. *. Ni ck Nane
Buddi es. *. VIP

Buddi es. *. Ri ngTone

Key names are strings. A key name followed by an asterisk indicates that the
corresponding property value is itself an indexed property set. For example, the
value of the Alt Spoken Names property is an indexed property set of strings,
where each string represents an alternate spoken name.

In addition, the Ent i ty class provides a get Pr oper ti es method that returns
a complete property set for any given subclass. For example, the following code
prints the properties of a specified location.

Example 34. Getting location properties

LocationSet |s = Location. getlLocations(nyVai);

if (Is.size() >0) {
Location loc = Is.el ementAt(0);
KeyedPropertySet kps = | oc.getProperties();
Systemout. println(kps.toString());

}

Here is an example of the output generated by the previous code example.
KVSet refers to a keyed property set, whereas XVSet refers to an indexed one.

KVSet
[
Nane = Cafeteria
Spoken Nane = the caff
Descri ption = The main cafeteria
Site = s-gl obal
Access Points = XVSet
[
1 = 00064b4e9146

52 --- Vocera Administration Interface Guide

Using Indexed Property Sets

]
Nei ghbor s = XVSet

[
]

1 = | -h_qg_I obby

]

When you update an entity, use a KeyedPr opert ySet to store the key-value
pairs that you want to update. The set should contain only the properties that
you want to update. For example, suppose you need to change a user's last
name. You would create and submit a property set that contains only one key-
value pair: the key "Last Name" and the new value for the user's last name.
Do not fetch a set of all the user's properties, enter a new last name, and then
submit the entire set. You might overwrite changes made by someone else,
either through a console or another VAl instance, made in between your fetch
and your posting.

Example 35. Using a KeyedPropertySet to update an entity

try {
KeyedPr opertySet kps = new KeyedPropertySet (nyVai);
kps. put String("Description", "N CU Nurse Station");
Location loc =
Locati on. get Locati onW t hl nt er nal Narme(nmyVai ,
"l -station3");
| oc. updat e(nyVai, kps);
} catch (VAI Exception ve) {
System out. println(ve. get Message());
}

Using Indexed Property Sets

The I ndexedPr opert ySet class extends the PropertySet class. An indexed
property set is like an array of property values, each of which can be a keyed or
indexed property set, or a string. Indexed property sets are homogeneous in the
sense that each indexed value is of the same type.

You can specify an index when storing or retrieving an | ndexedPr oper t ySet
element. Index values are integers, and the index of the first element in

an I ndexedPr oper t ySet is 0. You can also put a property value into an

I ndexedPr opert ySet without specifying an index, in which case the property
value is appended to the set.

The following code example shows some techniques for creating and querying
an I ndexedPr opertySet .

Example 36. Creating and querying an IndexedPropertySet
public static int createAl tSpokenNames() {

Working With Properties --- 53

Using Indexed Property Sets

int i ResultCode = -1;
try {
/1 Search for existing user.
String sUid = "Doe, Janet";
User Set usd obal = User.getUsers(mnmyVai);
i nt i Find = usd obal . findFirst Match(sUi d);
User u = usd obal . el ement At (i Fi nd);

/1 Add new al ternate spoken nanes

I ndexedPropertySet ips = new | ndexedPropertySet (nmyVai);
i ps. add("Jane");

i ps.add("J D");

KeyedPr opertySet kpsASN = new KeyedPropertySet (myVai);
kpsASN. put Set ("Al't Spoken Names", ips);

u. updat e(myVai, kpsASN);

/1 How to get elements fromthe At Spoken Nanes property set
KeyedPropertySet kpsUser = u.getProperties();

i ps = kpsUser. getl ndexedSet ("Al't Spoken Names");

String sASN2 = (String)ips.elenentAt(1);
Systemout.printIn("Al't Spoken Name 2 = " + sSASN2);

i Resul t Code = 0;

} catch (VA Exception ve) {
System out. println(ve. get Message());
i Resul t Code = ve. get Resul t Code();

}

return i Resul t Code;

}

Here is a string representation of the indexed set of alternate spoken names
created in the previous code example. In contrast to the integer indexes in the
code example (which begin with 0), the indexes shown in the output begin with
1.

Al't Spoken Nanes = XVSet
[
1 = Jane
2 =JD

]

The following code example shows some techniques for updating elements in
an | ndexedPr opertySet .

Example 37. Updating elements in an IndexedPropertySet

public static int updateAltSpokenNames() {
int i ResultCode = -1;
try {
/1 Search for existing user.
String sUid = "Doe, Janet";
User Set usd obal = User.getUsers(mnmyVai);

54 --- \locera Administration Interface Guide

Persisting Application Data

i nt i Find = us@d obal . findFirstMatch(sUi d);
User u = usd obal . el ement At (i Fi nd);

/1 Get the indexed set of At Spoken Nanes
KeyedPr opertySet kpsUser = u.getProperties();
I ndexedPr opertySet i psASN =

kpsUser. get | ndexedSet ("Al't Spoken Nanes");

/1 Replace ASN "Jay Jay" with "M ss Doe"
String sAdNane = "Jay Jay";
String sCurrentNane = "";
String sNewNane = "M ss Doe";
for (int i =0; i < ipsASN size(); i++) {
sCurrent Name = (String)ipsASN. el ement At (i);
i f (sCurrentName. equal s(sO dNane)) {
i psASN. set El enent At (sNewNane, i);

}
}

/'l Update the user's alternate spoken nanes

KeyedPr opertySet kpsUpdate = new KeyedPropertySet (nyVai);
kpsUpdat e. put Set ("Al't Spoken Nanes", i psASN);

u. updat e(myVai, kpsUpdate);

i Resul t Code = O0;

} catch (VA Exception ve) {
System out. println(ve. get Message());
i Resul t Code = ve. get Resul t Code();

}

return i Resul t Code;

}

Persisting Application Data

If your VAI application needs to persist data or settings from one session to
the next, you need to consider implementing some type of persistent data
storage. There are several ways to do this, including using configuration files
or relational database systems. VAI provides a simple way to persist application
data by allowing you to write a Pr oper t ySet file to the Vocera Server, where
the application can reliably read the data for subsequent sessions.

The Pr opert ySet class provides the following methods for persisting
application data on the Vocera Server.

Working With Properties --- 55

Persisting Application Data

Table 8. Methods for writing and reading application data

Method

Description

writeApplicationData(java.lang.String
sAppNane, java.lang. String sFil eNane,
java.lang. String sPropertyPath)

Writes application data to application data file
stored on the Vocera server.

readAppl i cati onDat a(VAl vai ,
java.lang. String sAppNane,
java.lang. String sFil eNane,
java.lang. String sPropertyPat h)

Reads data from an application data file stored
on the Vocera Server into a Pr oper t ySet .

The following example shows how to use VAl methods to write and read

application data.

Example 38. Writing and reading application data
public static void witeAppData(String sAppNane, String sFile){

try {

/Il Create a new keyed property set

KeyedPropertySet kpsApp = new KeyedPropertySet (myVai);
/1 Add sone properties to the set

kpsApp. put String("Version", "1.0");

kpsApp. put Stri ng(" Rol e",
kpsApp. put String("Unit",

"Adm ni strator");
aar);

//Create an indexed property set of colors

/land add it to the set

I ndexedPropertySet ipsColors = new | ndexedPropertySet (nyVai);

i psCol ors. add(" Red") ;

i psCol ors. add(" Green");
i psCol ors. add(" Bl ue");
kpsApp. put Set (" Col ors",

i psCol ors);

//Wite the application data to a file
kpsApp. wri t eAppl i cati onDat a(sAppNane, sFile,"");

}catch (Exception ex) {

System out . printl n(ex. get Message());

}
}

public static void readAppData(String sAppNane, String sFile){

try {

//Create a new keyed property set

KeyedPr opertySet kpsApp = new KeyedPropertySet (myVai);

// Read the application data

kpsApp = (KeyedPropertySet) PropertySet.readApplicati onDat a(

nmyVai ,
sAppNane,
sFil e,

nn

DE

56 --- Vocera Administration Interface Guide

Persisting Application Data

/I Print the application data
System out. printl n(kpsApp.toString());
}catch (Exception ex) {
System out . printl n(ex. get Message());
}
}

Here is the output generated from the r eadAppDat a() method in the previous
code example:

KVSet
[
Ver si on = 1.0
Rol e = Adni ni strator
Uni t = Cccu
Col ors = XVSet
[
1 = Red
2 = Green
3 = Bl ue

]

For more details about using the wri t eAppl i cati onDat a() and
readAppl i cati onDat a() methods, see the Javadoc reference for the
PropertySet class.

Working With Properties --- 57

Persisting Application Data

58 -+ Vocera Administration Interface Guide

Managing the Vocera Server

This section describes how to control, manage, and monitor the Vocera Server.

Connecting to the Vocera Server

This topic describes techniques for opening a basic VAI connection,
authenticated by a user name and password, to a Vocera Server. See Security
Features on page 73 for more information about controlling access to VAI
applications and to the Vocera Server.

In the simplest case, you can construct a VAI object using the default
constructor, then call the open() method to establish a connection to the
Vocera Server. Once you have opened a VAI object, the other methods in
VAl and those of other classes in the interface can be called. Many of these
methods (the static ones in particular) require the opened VAI object to be
passed as their first argument. At the end of the session, call cl ose() to
disconnect from the Vocera Server.

Note: VAl cannot open a connection to a server that has been stopped. For
example, if a person has stopped the server by clicking the Stop button in the
Vocera Control Panel, someone must click the Start button to enable VAI to
open a connection.

Using the VAl.open() Method

The VAI . open() call takes as arguments the IP address of the Vocera Server,
user ID and password, and an instance of the VAI Li st ener class. The IP
address must be a dotted IP address, for example, 192. 168. 1. 2. You cannot
specify | ocal host or 127. 0. 0. 1, its equivalent loopback address. Do not
specify a port.

Managing the Vocera Server --- 59

Using the VAl.open() Method

To open a connection to a Vocera Cluster installation, specify a comma-
separated list of the addresses of the servers in the cluster. If a failover occurs,
one of the standby nodes becomes active and takes control of the cluster. The
open() call also takes a VAI Li st ener object as an argument. This argument
allows your application to monitor server state changes. Simple applications
may not need this information, and can use a null value for the parameter.

If your application loses its connection to the Vocera Server, it can monitor

the server and automatically reopen a connection when another server in the
cluster becomes active. See Monitoring the Vocera Server on page 67 for
details.

The user ID and password arguments are those normally prompted for by the
Administration Console. You can supply Admi ni st rat or as the user name and
the system administration password as the password, or you can supply the user
ID and password of a user who has full administrative privileges. For simplicity,
examples in this section hard-code the login credentials. When security is a
concern, an application should prompt for login credentials at the beginning of
each VAl session.

The following code listing shows how to use the open() method.

Example 39. Opening a connection

import vai.?*;

public class Vai Denb {
public static VAl nyVai = new VAI();

private class MyVai Li stener inplenents VAIListener {
public voi d handl eServer St at eChange(int i State) ({
System out. println("Vocera server state has changed:
+ VAl .getServerStateString(iState));
}
public void handl eReport Status(String s1, int i1,
String s2, int i2,
String s3) {
Systemout.println("Reporting a server status change.");
}
}

public MyVai Li stener nyL;

public Vai Demo() {
myL = new MyVai Li stener();
}

public int denpQpen() {
int i ResultCode = -1;

try {

60 - Vocera Administration Interface Guide

Result Codes for the open() Method

nmyVai . open("192. 168. 1. 2", "Adm nistrator",
"adm n", this.nyL);
i Resul t Code = O0;

} catch (VAI Exception ve) {
Systemout. println("Code: " + ve.getResultCode());
Systemout. println("Message: " + ve.getMessage());
i Resul t Code = ve. get Resul t Code();

}
return i Resul t Code;

}

public static void main(String[] args) {
Vai Denp denb = new Vai Deno() ;
int i ResultCode = deno.denpOpen();
if (iResultCode == 0) {

nyVai . cl ose();

}

}

}

The following open() method passes nul | for the VAI Li st ener object,
which means it does not monitor server state changes.

myVai . open("192.168. 1. 2", "Admi ni strator","adm n", nul |);

The following open() method passes the hostname, an individual username
who has full administrative privileges, the user's password, and a VAI Li st ener
object, which means it monitors server state changes.

nmyVai . open("vocserver","jdoe", "sesane", this.nyL);

The following open() method specifies a cluster of three Vocera Servers,
Administrator username and password, and a VAI Li st ener object, which
means it monitors server state changes.

nyVai . open("vocl, voc2, voc3", " Adm ni strator"”, "adm n", this. nyL);

Note: If Active Directory authentication has been enabled on the Vocera Server,
there is an alternative method called openW t hADLogi n() that allows you to
open a connection to the Vocera Server using Active Directory credentials. For
details, see the Javadoc for the VAI class.

Result Codes for the open() Method

If a connection cannot be established, the open() method returns a result code
to indicate why it failed. The following table lists some of the reasons that the
open() method might fail. For complete information, see the Javadoc for the
VAI Except i on class.

Managing the Vlocera Server --- 61

Getting Vocera Server Properties

Table 9. Error codes for a failed connection

Error Code Message

rcCannotConnect

Could not connect to server.

rcConnectionRefused Connection to server refused.

rcinvalidPassword

Invalid password.

rcLicenseLimit No more user licenses available.

rcLoginLimit No more login licenses available.

Getting Vocera Server Properties

The VAI class provides the following methods for querying the properties of a

Vocera Server.

Table 10. Methods for querying the properties of a Vocera Server

Method

Description

get Syst enProperties()

Returns a keyed property set for a
specified Vocera system. Properties
include Product Major Version,
Product Major Version, Locale,
and Voice Prints Enabled.

See VAI Example on page 18 for a
code example.

get Server StateString(int
i Server St at e)

Returns a string describing the
server's current state. Values include
"Could not connect to server",
"Server stopped"”, and "Server
started". A full list of server states

is found in the VAI Li st ener
interface.

get Li censel nfo()

Returns a Li censel nf o object.
A Li censel nf 0 object exposes
several public fields that represent
various aspects of a Vocera license.
For example, the cDigitalLines field
stores an integer value representing
the maximum allowed number of
digital phone lines.

62 -+ Vocera Administration Interface Guide

Setting Vocera Server Properties

The following code example uses a Li censel nf o object to get information
about the number of digital phone lines allowed and in use by a server.
Example 40. Getting license information

public int getDigitalLineslnfo() {
int i ResultCode = -1;

try {
Li censelnfo |i = nyVai.getLicensel nfo();
int i MaxLines = |i.cDigitalLines;
int iCurrLines = 1li.cCurrentDigitallines;

Systemout.printin("Currently using " +
i CurrlLines +
"oof " +
i MaxLi nes +
" available lines.");
i Resul t Code = O0;
} catch (VA Exception ve) {
i Resul t Code = ve. get Resul t Code();
}

return i Resul t Code;

}

Setting Vocera Server Properties

The VAI class provides the updat eSyst enPr operti es() method. This
method takes one argument, a property set that contains the property values
you want to update.

The following code example uses the updat eSyst enPr operti es() method
to set properties for Company, Days To Keep Messages, and Default User.Low
Battery Alert.

Example 41. Updating Vocera Server properties

private voi d updat eSysProps() {
try {

// Create a new keyed property set for system properties
KeyedPr opertySet kpsSys = new KeyedPropertySet (myVai);
kpsSys. put Stri ng(" Conpany", "Vocera Comruni cati ons");
kpsSys. put | nt ("Days To Keep Messages", 7);

/]l Create a keyed property set for Default User properties
KeyedPropertySet kpsDef User = new KeyedPropertySet (nmyVai);
kpsDef User . put Bool ean("Low Battery Alert", false);

/1 Add Default User property set to the System property set
kpsSys. put Set ("Default User", kpsDefUser);

/1 Update system properties
myVai . updat eSyst enPr operti es(kpsSys);

Managing the Vocera Server -+ 63

Controlling the Vocera Server

} catch (VAI Exception ve) {
System out. println(ve. get Message());
}
}

Controlling the Vocera Server

If you have an open VAl connection, you can stop and start a Vocera Server
programmatically. However, VAl cannot open a connection to a server that

has been stopped. For example, if a person has stopped the server by clicking
the Stop button in the Vocera Control Panel, someone must click the Start
button to enable VAl to open a connection. Similarly, if VAl code stops the
server and then closes the connection, you will not be able to restart the server
programmatically.

Note: Because you cannot connect to the server when it is stopped, you
may want to embed the open() call in a loop that repeatedly tries to open a
connection until it succeeds.

The VAI class implements the following methods for controlling a Vocera
Server.

Table 11. Methods for controlling the Vocera Server

Method Description

start Server () Starts the Vocera Server, as if you had clicked
the Run button in the Vocera control panel.

st opServer () Stops the Vocera Server, as if you had clicked
the Stop button in the Vocera control panel.

restart Server () Shuts down the Vocera Server and all
associated services (simulating a fail-
over), and then restarts them. Calling
restart Server () is not the same as
calling st opSer ver () and then calling
start Server () . The effects of calling
restart Server () are more drastic.

The following code example opens a connection to a Vocera Server, stops
the server, and then starts the server. This simple example is designed to
demonstrate several VAI class methods. In a production environment, when
you really want to restart the server (as opposed to stopping the server, doing

64 --- Vocera Administration Interface Guide

Managing the Vocera Database

something, and then starting the server), use the r est art Ser ver () method.
Moreover, rather than depending on timers, you should rely on VAI Li st ener
call-backs to track changes to server states. See Monitoring the Vocera
Server on page 67.

Example 42. Stopping and starting the Vocera Server

public static void stopStartServer() {
Vai Denp denp = new Vai Deno() ;
try {
nmyVai . open("10.0. 1. 2",
"Admi nistrator",
"adm n",
deno. nylL) ;

nyVai . st opServer () ;

/'l Gve the server tinme to shut down.
Thr ead. sl eep(20000); // 20 seconds

nmyVai . start Server();

/1 Gve the server time to restart.
Thr ead. sl eep(20000); // 20 seconds

nyVai . cl ose();

} catch (VAI Exception ve) {
Systemout. println("VA Exception: " + ve.getMessage());
} catch (InterruptedException ie) { // For Thread.sl eep
Systemout. println(ie.getMessage());

Managing the Vocera Database

The VAI class implements the following methods for managing a Vocera
database.

Table 12. Methods for managing a Vocera database

Method Description

backup() Backs up the Vocera database, creating a
new .zip file in \vocera\backup.

restore(java.lang. String Restores the Vocera database from a specified
sFi | eNane) backup file in the \vocera\backup directory.

enpt yDat abase() Empties the Vocera database.

Managing the Vocera Server --- 65

Managing the Vocera Database

Method Description

get BackupFi | eNames() Retrieves the names of backup files in the
\vocera\backup directory on the Vocera
Server computer.

The following code example prints a list of backup files, prompts the user to
enter a backup file name, then uses the specified file to restore the Vocera
database. Only the file name needs to be specified, not the full path. The path
is <Vocer a_Dri ve>:\vocera\backup on the Vocera Server.

Example 43. Restoring the Vocera database from a backup file

public static void pronpt AndRestore() {
Vai Deno denp = new Vai Deno();
try {
nmyVai . open(" qal ab4",
"Adm ni strator",
"adm n",
deno. nmyL) ;

/1l Retrieve the array of backup fil enanes

String[] saBakFiles = nyVai.get BackupFi | eNanes();

System out. println("Backup Files:");

for (int i =0; i < saBakFiles.length; i++) {
System out . printl n(saBakFiles[i]);

}

Systemout.println("Enter the name of a Backup File: ");

java.io.BufferedReader in =
new j ava. i o. Buf f er edReader (
new j ava. i o. | nput St r eanReader (System i n)
DE
String sFileName = in.readLine();

/] Restore the backup file.
/1 (Error checking omtted for sinplicity.)
myVai . restore(sFil eNane) ;

/1 Close the connection
nmyVai . cl ose();

} catch (VAI Exception ve) {
Systemout. println("VA Exception: " + ve.getMessage());
} catch (java.io.lOException ioe) { // For in.readLine
System out. println(ioe. get Message());

66 - Vocera Administration Interface Guide

Monitoring the Vocera Server

Monitoring the Vocera Server

The VAI . open() call takes a VAI Li st ener object as an argument. This
argument allows your application to monitor server state changes. Simple
applications may not need this information, and can use a null value.

If you choose to monitor server state changes in your application, make sure

you implement the following methods defined in the VAI Li st ener interface:

Table 13. Methods for monitoring the Vocera Server

Method

Description

handl eSer ver St at eChange(int i State) Starting, stopping, and closing the VAI

connection to the server all trigger events
that your VAI Li st ener implementation
can handle based on the current state of
the server. The i St at us parameter of the

handl eSer ver St at eChange() method

represents a server status code defined in
VAI Li st ener.

Important: The VAI Li st ener runs on an

internal call-back thread separate from the
VAl thread. Therefore, you cannot make
calls from VAI Li st ener back to the VAI

instance. Otherwise, your program may hang.

handl eReport St at us(j ava. l ang. Stri ng
sTitle, int iStatus, java.lang. String

sStatus, int iPercentDone, and restore operations.
java.lang. String sError)

Handles status information reported as a result
of bulk operations, such as database backup

The following code listing shows how a simple listener responds as the server is
stopped and restarted.

Example 44. Using VAlListener to monitor the Vocera Server

import vai.?*;

public class Vai Denb {

public
public
public
public

static VAl nyVai = new VAI();

static String sServerl P = "10.37.41. 20, 10. 37. 41. 21";
static String sAdm nUser = "Adm nistrator"”;

static String sAdm nPassword = "adm n";

private class My/Vai Li stener inplenments VAIListener {

bool ean bSt opped
bool ean bStarted

fal se;
true;

public voi d handl eServer St at eChange(int i State)

Managing the Vlocera Server ---

67

Monitoring the Vocera Server

Systemout. println("Vocera Server state has changed:
VAl . get Server StateString(i State));

if (iState==VAlListener.ssStopped) {

bSt opped = true;

bStarted = fal se;
} else if (iState==VAlListener.ssStarted) {

bStarted = true;

bSt opped = fal se;

}
/1 handl eReport Status is defined in VAIListener
// Note: iStatus is one of rs codes in VAIListener,
/] sError is enpty unless iStatus == rsError.

public void handl eReportStatus(String sTitle,
int iStatus,
String sStatus,
i nt i Percent Done,
String sError)

Systemout. println("Reporting a server status change.");
Systemout.printin("[Report Title] \t" + sTitle);
Systemout.printin("[Status Code] \t" + iStatus);
Systemout.printin("[Status Msg] \t" + sStatus);
Systemout.printin("[Percent Done] \t" + iPercentDone);
Systemout.printin("[Error Msg] \t" + sError);
Systemout. println("End of status report.");
}
}

public MyVai Li stener nylL;

public Vai Deno() {
myL = new MyVai Li stener();
}

public static void main(String[] args) {
Vai Denp denb = new Vai Deno() ;

try {
int i ResultCode = deno. openConnecti on();
i f (i ResultCode==0) {
nmyVai . st opServer () ;
while (!deno. nyL. bSt opped) {
Thr ead. sl eep(5000) ;
}
nmyVai . start Server () ;
while (!deno.nyL. bStarted) {
Thr ead. sl eep(5000);
}

deno. openConnection();

} catch (Exception ex) {
System out. println(ex. get Message());

68 - Vocera Administration Interface Guide

Vocera Server States

}
}

private void openConnection() {
int i ResultCode = rclnitResult;

try {
System out. println("Opening connection to server...");

nyVai . open(sServer| P, sAdm nUser, sAdm nPassword, nyL);
i Resul t Code = rcOK;
} catch (VAI Exception ve) {
System out. println(ve. get Message());
i Resul t Code = ve. get Resul t Code();

}
return i Resul t Code;

}
}

Vocera Server States

When you call the handl eSer ver St at eChange() method defined in the

VAI Li st ener interface, you can specify how to handle each state change that
occurs to the Vocera Server while your application is running. For example, if
you determine that the server is started, you can reopen the connection to it.

Table 14. Vocera Server states

Server State Description

ssCancelStart Server start cancelled.

ssEmpty Empty operation in progress.
ssNotConnected No connection to server.
ssRestore Restore operation in progress.
ssStandby Server in cluster standby mode.
ssStarted Server process started.
ssStarting Server process starting.
ssStopped Server process stopped.
ssStopping Server process stopping.

Managing the Vocera Server --- 69

Vocera Server States

70 - Vocera Administration Interface Guide

Error Handling

VAl uses the Java exception mechanism to report runtime errors. When a
method triggers a error, the Java runtime framework creates an exception
object that contains information about the error. This process is called throwing
an exception. To handle the error, an application must catch the exception.

For example, the Addr ess. cr eat e() method throws an exception when it
triggers a runtime error. Therefore, you must wrap the Addr ess. creat e() call
inatry...catch block, as shown in the following code example.

Example 45. Catching an exception

KeyedPr opertySet kpsAddress = new KeyedPropertySet (myVai);
kpsAddress. put String("Last Nane", "Jones");
try {
Address a = Address.create(nmyVai, kpsAddress);
} catch (VAI Exception ve) {
System out. println(ve. get Message());
}

Using the VAIException Class

Most of the methods exposed in VAI classes throw a VAI Except i on, defined
in the class of that name, in case of an error. An error may be thrown for many
reasons, including among others:

¢ The VAI connection to the Vocera server was not open when the method was
called.

¢ One or more method arguments are invalid.

® The entity on which the method was called has been deleted.

The VAI Except i on class contains two methods to help you determine the
reason for the error and display it to the user of your application, if desired:

Error Handling --- 71

Using the VAIException Class

Table 15. Methods for returning information about exceptions

Method

Description

get Resul t Code()

Returns one of the integer constants defined
in the VAI Except i on class. VAl error code
values are all greater than 0. Consequently,
you can use a value of 0 as the result code for
a successful operation. The VAI Except i on
class defines integer constants such as

rcLi censeLi m t to represent VAl error
codes. These constants are described in the
Javadocs for the VAI Except i on class.

get Message()

Returns a locale-specific string containing an
error message.

The following code example shows how get Message() and
get Resul t Code() can provide information when an error occurs.

Example 46. Getting exception messages and result codes

Il

public int open(String sHost,
int i ResultCode = rclnitResult;
try {

Initial
public final
/!l Result code for successful
public final

result code val ue.

static int rclnitResult = -1;
oper ati on.
static int rcOK = 0;

nmyVai . open(sHost, sUser Nane,
i Resul t Code = rcOK;

} catch (VAI Exception ve) {

i Resul t Code = ve. get Resul t Code();

if (i ResultCode == VAI Exception.rcLicenseLimt) {

System out. println(ve. get Message());

72 -+ Vlocera Administration Interface Guide

sPasswor d,

String sUserNanme, String sPassword)

nul l');

Security Features

This section describes VAI security features.

Controlling Access

VAl applications can use certificates to authenticate users with a Vocera Server.
The VAI class provides the following methods for working with certificates.

Table 16. Methods for working with certificates

Method

Description

makeCertificateString(java.lang. String
sAdmi nLogi n, java.lang. String

sAdmi nPassword, java.lang. String[]
saAppPasswor ds, bool ean bUser | DPasswor d)

Creates a digital certificate, represented
as a String, to be passed to the
openWthCertificateString()
method. You can specify null instead of
an array of passwords when you create a
certificate string. A user can then log in
to the VAI application by providing his or
her Vocera password.

makeCertificateFile(java.lang.String
sFil eNane, java.lang. String sAdm nLogin,
java.lang. String sAdm nPassword,
java.lang. String[] saAppPasswords,
bUser | DPasswor d)

bool ean

Like makeCertificateString(),
but stores the certificate in a file

with the given fully-qualified

name, to be passed to the
openWthCertificateFile()
method.

You can also use the mc.bat utility on
the Vocera Developer Kit CD to create
a certificate file. See Using the mc.bat
Utility on page 75.

Security Features -+ 73

Controlling Access

Method Description
makeAppCertificateFile(java.lang. String Like makeCertificateFile(),
sAppNane, java.lang. String sFil eNane, but stores the certificate file with
java.lang. String sAdm nLogi n, the given application on the
java.lang. String sAdm nPassword, Vocera Server, to be passed to the
java.lang. String[] saAppPasswords, bool ean openW t hAppCertificateFile()
bUser | DPasswor d) method.
openWthCertificateString(java.lang. String Opens the VAl interface object using an
sServerlList, java.lang.String application password and a certificate
sLogin, java.lang. String sPassword, represented as a String.

java.lang. String sCertificate, VAILIistener

1)

openWthCertificateFile(java.lang. String Opens the VAl interface object using an
sServerlList, java.lang.String application password and a certificate
sLogin, java.lang. String sPassword, file.

java.lang. String sFi |l eNane, VAIListener |)

openWthAppCertificateFile(java.lang. String Opensthe VAl interface object using an

sServerlList, java.lang.String application password and a certificate

sLogin, java.lang. String sPassword, file stored with the given application on
java.lang. String sAppNane, java.lang.String the Vocera Server. This method is useful
sFi | eNane, VAIListener |) for developing secure GUI applications

hosted on the Vocera Server that do not
require System Administrator permission
to log in.

The VAI security mechanism supports application-specific passwords, so you
can enable users to log in to a VAl application without giving them a Vocera
administrator user name and password.

The following code example combines several aspects of working with
certificates and application-specific passwords. In practice, you would probably
perform the steps separately.

Example 47. Using certificates with application passwords

public int openUsingCertl() {
int iResultCode = -1;

try {
String[] saPass = { "green", "yellow', "purple" };
String sCert =
VAl . makeCertificateString("Adm nistrator",

"adm n",
saPass,
fal se);

myVai . openWthCertificateString("192.168.1.1",

"ndavi s",

74 --- Vlocera Administration Interface Guide

Using the mc.bat Utility

"yel l ow',
sCert,
myL);
i Resul t Code = O0;
} catch (VAI Exception ve) {
i Resul t Code = ve. get Resul t Code();
}

return i Resul t Code;

}

Important: You should never hard-code passwords within an application.

Always provide a login user interface with which a user can supply a password.

You can also use certificates without specifying application passwords, as

shown in the following code example. This example is designed to show several
related techniques at a glance. In a production application, you would perform

these steps separately.

Example 48. Using certificates without application passwords

public int openUsingCert2() {
int iResultCode = -1;

try {
String sCert = VAl.nmakeCertificateString("Adm nistrator",
"adm n",
nul I,
true);
nmyVai . openWthCertificateString("192.168.1.1",
"mdavi s",
"sowhat ",
sCert,
myL);

i Resul t Code = O0;
} catch (VAI Exception ve) {

i Resul t Code = ve. get Resul t Code();
}

return i Resul t Code;

}

Using the mc.bat Utility

Vocera provides a batch file named mc.bat that you can use to encrypt
login credentials and create a certificate file. The batch file provides a simple
command-line interface that prompts you for the values needed to create a
certificate.

To use the mc.bat utility to create a certificate file:
1. Copy the mc.bat file from the VAI\server directory on the Vocera

Developer Kit CD into a location on your Vocera server machine.

Security Features -+

75

VAl and Tiered Administrators

2. Run mc.bat.

The program opens a Command Prompt window, allowing you to enter
several parameters needed to create a certificate file.

3. Enter values for the filename, administrator login ID, administrator
password, number of application passwords, and each individual application
password.

When you are finished, the utility creates a certificate file in the same
directory.

The following figure shows an example of how the mc.bat utility was used to
create a certificate file named certificate.txt.

Figure 3. Using mc.bat to create a certificate

Press enter to accept default value in hrackets
Enter @ to guit the application at any time

File name of certificate [certificate.txt]:
Administrator Login ID [Administrator]:
Administrator Password [1: admin
#t of application passwords: [al: 3
d #1: []1: green
[1: yellow
[1: purple

Made certificate certificate.txt

VAl and Tiered Administrators

The Vocera Administration Console lets you grant users different levels of access
to administrative features, effectively distributing administration responsibility
for the Vocera server to several tiered administrators. Tiered administrators

are Vocera users with some but not all administrative privileges based on

their membership in one or more groups. For more information about tiered
administrators, see the Vocera Administration Guide.

Unlike the Vocera Administration Console, VAI does not support tiered
administrators. Anyone who is able to log into a VAl application has access to
whatever Vocera administrative features that the application exposes. However,
you can choose to expose only certain administrative features in your VAI
application, or you can restrict the application to only certain users.

76 -+ Vocera Administration Interface Guide

Encrypted Passwords

Encrypted Passwords

You can use VAI to update passwords, but you cannot retrieve them. VAI
uses strong public key cryptography to protect passwords. Once encrypted,
passwords are never decrypted anywhere within VAl and within the Vocera
Server code.

You should not hard-code credentials into your application. Prompt for them at
the beginning of each session.

Authenticating VAI Applications

On the System > License Info tab of the Vocera Administration Console,

the Vocera administrator can enter a comma-separated list of IP addresses in
the VAI Application IP Addresses field to specify which computers running
VAl applications are allowed to connect to the Vocera Server. This prevents a
rogue application from accessing the Vocera Server. If you leave this field blank,
all VAl applications will be allowed to connect to the Vocera Server. For more
information, see the Vocera Administration Guide.

Best Practices for Multiuser Applications

A VAl application can be designed to support multiple simultaneous users. For
example, you can develop a Web application with a client interface that runs in
a browser. For best performance, your multiuser VAI application should follow
these guidelines:

¢ Use a shared connection — To optimize performance and network I/O and
to reduce the multiuser stress on the server, you should design multiuser VAI
applications to use only a single, shared connection to the Vocera Server.

Important: The Vocera Server cannot handle many simultaneous VAI
connections. You should always test your multiuser application on a test
server to see if it can handle the load of multiple simultaneous users.

¢ Open the connection with a digital certificate — If your application is
designed for people without System Administration permission, use one of
the VAI methods to create a digital certificate to authenticate users logging
into the application. When you open the VAI connection, use one of the VAI
methods to open a connection using the digital certificate. See Controlling
Access on page 73.

¢ Check login credentials — Implement methods to verify the credentials
of each user logging into the application. The VAI class provides several
methods for verifying login credentials.

Security Features - 77

Best Practices for Multiuser Applications

¢ Make your application thread-safe — To prevent thread interference and
memory consistency errors, synchronize access to shared resources.

A servlet is one example of a multiuser Web application. The following figure
shows a servlet running in Tomcat on the Vocera Server computer. Multiple
users can connect to the servlet using a browser.

Figure 4. Servlet example

Tomcat
HTTP Reguest
Apache (Serviet Engine) [~
(HTTP Listener) Vocera Server

+ HTTP Response
r/ < Serviet e

Browser

Users can log into a multiuser VAI application using one of the following types
of credentials:

¢ Administrator credentials — System Adminstrator credentials for the Vocera
system. This can be the Vocera user ID and password of a user with System
Administrator permission, or the "Administrator" ID and password.

¢ User credentials — Vocera user ID and password. The Vocera password can
be a null string (" "). However, for security reasons your application should
require a non-blank password.

¢ Application credentials — VAl application credentials that satisfy an
application certificate.

The VAI class provides the following methods for checking whether login
credentials are valid.

Table 17. Methods for working with certificates

Method Description

checkAdm nCredenti al s(java.l ang. String Returns t r ue if the credentials are for a
sLogin, java.lang. String sPassword) valid Vocera System Administrator.
checkADAdm nCredenti al s(java. |l ang. String Returns t r ue if the Active Directory
sLogin, java.lang. String sPassword, credentials are for a valid Vocera System
java.lang. String sADConfi gNane) Administrator.

checkUser Credenti al s(j ava.l ang. String Returns t r ue if the credentials are for a
sLogin, java.lang. String sPassword) valid Vocera user.

78 -+ Vocera Administration Interface Guide

Best Practices for Multiuser Applications

Method Description

checkADUser Credenti al s(j ava.l ang. String Returns t r ue if the Active Directory
sLogin, java.lang. String sPassword, credentials are for a valid Vocera user.
java.l ang. String sADConfi gName)

checkAppCredenti al s(java. |l ang. String Returns t r ue if the credentials are valid
sLogin, java.lang. String sPassword, for the application certificate.
java.lang. String sAppNanme, java.lang.String

sFi | eNane)

For more information about VAI methods for checking login credentials, see the
VAl Javadoc reference.

Security Features -+ 79

Best Practices for Multiuser Applications

80 --- Vocera Administration Interface Guide

« = Property Reference

The following topics are a reference to the property keys and values of various
VAl entities. All property values can be updated except where specifically
indicated.

e Address Properties on page 82

e Contact Properties on page 84

e Device Properties on page 85

e Group Properties on page 87

¢ Location Properties on page 106
e Site Properties on page 108

e User Properties on page 123

e System Properties on page 134

Property Reference --- 81

Address Properties

Address Properties

The following table lists the properties of an Address Book Entry. The Vocera
address book is a convenient way for badge users to contact places and people
who are not badge users.

Since: 4.0

Table 18. Address properties

Key Description
Last Name The last name of a person or the name of a
place.

Datatype: String
Maximum Length: 50 characters
Required: Yes

First Name The first name of a person. If the Address is a
place rather than a person, enter "" (an empty
string).

Datatype: String
Maximum Length: 50 characters
Required: Yes

Alt Spoken Names Property set containing up to three variations of
the spoken name of the person or place.

Datatype: IndexedPropertySet
Required: No

Alt Spoken Names.* Represents each Alternate Spoken Name in the
property set.

Datatype: String
Maximum Length: 50 characters
Required: No

Ident Phrase An identifying phrase that distinguishes
a person or place from another with the
same name. Example:Rita Cark in
Staffing

Datatype: String
Maximum Length: 100 characters
Required: No

82 --- Vocera Administration Interface Guide

Address Properties

Key Description

Email Address An optional email address, which allows users
to send voice messages as an email attachment.
Example: j doe@ocer a. com

Datatype: String
Maximum Length: 40 characters
Required: No

Desk Phone The desk phone number or extension for the
person or place.

Datatype: String
Maximum Length: 75 characters
Required: No

Pager Phone Pager number for the person or place.
Datatype: String
Maximum Length: 75 characters
Required: No

Site The home site for the person or place. If the
entire organization uses this address book entry,
choose the Global site. If you don't specify a
site, the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

Property Reference --- 83

Contact Properties

Contact Properties

The following table lists the properties of a Contact. The Cont act class
represents an outside buddy as a VAI entity.

Since: 4.0

Table 19. Contact properties

Key

Description

Last Name

An outside buddy's last name.
Datatype: String

Maximum Length: 50 characters
Required: Yes

First Name

An outside buddy's first name.
Datatype: String

Maximum Length: 50 characters
Required: Yes

Email Address

An optional email address, which allows users
to send voice messages as an email attachment.
Example: j doe@ocer a. com

Datatype: String
Maximum Length: 60 characters
Required: No

Desk Phone

The desk phone number or extension for the
outside buddy.

Datatype: String
Maximum Length: 75 characters
Required: No

Pager Phone

Pager number for the outside buddy.
Datatype: String

Maximum Length: 75 characters
Required: No

Owner

The user for whom this is a personal contact
(that is, the owner of this outside buddy).
Cannot be updated.

Datatype: User object

84 --- Vocera Administration Interface Guide

Device Properties

Device Properties

The following table lists the properties of a Device. The Devi ce class represents
a device, such as a badge, that connects to the Vocera system.

Since: 4.1

Table 20. Device properties

Key Description

MAC Address Specifies the unique MAC address of the device.
Datatype: String
Maximum Length: 12 characters
Required: Yes

Serial No The device serial number.

For B2000 badges, the serial number is 12
characters. For B1000A badges, the serial
number is 15 characters.

Datatype: String
Maximum Length: 15 characters
Required: No

Label The label applied to the device for identification
purposes.

Datatype: String
Maximum Length: 20 characters
Required: No

Status The device status. The value you specify must
match one of the existing device status values.

Datatype: String
Maximum Length: 20 characters
Required: No

Tracking Time A time used to track the device. This time could
be mapped to any internal tracking event,
such as the date when the device was assigned
to a user or sent for repair. The time value is
specified as the number of milliseconds since
1/1/70 00:00 GMT.

Datatype: long

Required: No

Property Reference --- 85

Device Properties

Key

Description

Owning Group

The group that owns the device.

Datatype: Group object, or a string
representing the group's internal name.

Required: No

Notes

Notes about the device. For example, you could
include more information about the device
status.

Datatype: String
Maximum Length: 1000 characters
Required: No

Site

The device's home site. If you don't specify a
site, the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

Shared

Indicates whether the device is shared by
multiple users.

Datatype: boolean
Required: No

86 --- Vocera Administration Interface Guide

Group Properties

Group Properties

The following table lists the properties of a Group. Vocera groups organize
users into roles such as Floor Manager, Cashier, Nurse, Cardiologist, Executive,

and so forth.

Since: 4.0

Table 21. Group properties

Key Description

Group Type A string indicating the type of group. Enter
O di nary or Depart ment
Datatype: String
Required: No

Name The name of the group. The name must start

with a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (),
or dashes (-). No other characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name

An optional alternate spoken name for the
group. For example, some people might say
"the Sales team" instead of "Sales." If you
entert he Sal es t eamas a spoken name,
the Genie will recognize "Call the sales team."
Datatype: String

Maximum Length: 50 characters

Required: No

Spoken Member Name

Enter a name that describes a member of

the group. For example, in the group called
Sales, a group member would be known as a
sal es per son. This would allow the Genie
to recognize a command such as, "Call a sales
person."

Datatype: String
Maximum Length: 50 characters

Required: No

Property Reference --- 87

Group Properties

Key

Description

Spoken Members Name

Optional plural name that collectively describes
the members of the group. For example, in

the group called Sales, the collection of group
members could be called sal es peopl e.
This would allow the Genie to recognize a
command such as, "Send a message to all sales
people.”

Datatype: String
Maximum Length: 50 characters
Required: No

Phone

Phone number or extension.

If the telephony integration option is installed,
outside callers who dial the Vocera hunt number
can connect to the group by entering the group
extension at the Genie prompt, instead of
saying the group name.

Datatype: String

Maximum Length: 75 characters

Required: No

Pager

Pager number for the group.

You can configure Vocera to forward a group's
calls to this specified pager.

Datatype: String

Maximum Length: 75 characters
Required: No

Since: 4.1

88 --- Vocera Administration Interface Guide

Group Properties

Key

Description

Scheduling Type

Specify a scheduling option to indicate how
calls to the group should be distributed. Enter
Sequenti al or Round Robi n.

Choose Sequent i al if you want one person
to be the main contact. The second member in
the group list is called only if the first person is
not available, a third member is called only if
the first two are unavailable, and so forth.

Choose Round Robi n if you want calls to

be distributed as evenly as possible among
group members. When you choose round robin,
Vocera iterates through members in the group
until someone accepts the call; however, the
person who most recently accepted a group call
is tried last.

Datatype: String
Required: No

PIN

Specify a value of the PIN for long distance
calls. A telephony PIN authorizes members of
a Vocera department to make phone calls and
allows an organization to charge departments
for those calls. A PIN can include digits, special
characters, and PIN macros.

Enter a PIN value only if you are working with a
department group.

Datatype: String
Maximum Length: 50 characters
Required: No

Cost Center

The department's Cost Center ID, which enables
Vocera to track system usage by department
and potentially allows an organization to charge
its departments for relative usage.

Enter a Cost Center value only if you are
working with a department group.

Datatype: String
Maximum Length: 50 characters

Required: No

Property Reference --- 89

Group Properties

Key

Description

Auto Remove

Specifies whether membership in the group is
temporary.

If t r ue, Vocera automatically removes

users from the group when they log out,

but leaves the rest of the user profile in the
database. Users are not added into the group
automatically when they log back in.

Datatype: boolean
Required: No

Off Site Calls

Specifies whether calls to members of the group
can be received at sites other than the group's
home site.

This property behaves the same for all groups,
including groups assigned to the Global site.

If your Vocera system has only one site, this
property does not apply.

Datatype: boolean
Required: No
Since: 4.2

Off Site Broadcasts

Specifies whether broadcasts to members of the
group can be received at sites other than the
group's home site.

This property behaves the same for all groups,
including groups assigned to the Global site.

If your Vocera system has only one site, this
property does not apply.

Datatype: boolean

Required: No

Since: 4.2

No Call

Specifies whether the group is used to grant

or revoke permissions only and should not be
callable. If t r ue, calling and broadcasting to
this group is disabled.

Datatype: boolean
Required: No
Since: 4.2

90 - Vocera Administration Interface Guide

Group Properties

Key Description

Site The group's home site.
If your organization has multiple sites connected
to the same Vocera server, specify the home site
that represents the member's physical location.
If the group's membership spans multiple sites,
specify the Global site.
Datatype: Site object
Required: No

Forwarding Specify a forwarding option to indicate whether

calls should be forwarded, and, if so, where to
forward them. Enter None, Phone, Pager or
User.

¢ None means that if a call to the group is not
answered, the caller is prompted to leave a
message, and that message is delivered to all
members of the group.

¢ Phone transfers the unanswered call to the
number that you enter for the Forwarding
Number property. This feature requires the
telephony integration option.

e Pager transfers the unanswered call to the
number that you enter for the Pager property.
If the value for the Pager property is empty,
this option is invalid. This feature requires the
telephony integration option.

e User transfers the call to a particular badge
user, group, or address book entry when no
members of the original group can take the
call.

Datatype: String
Required: No

Forwarding Number

Phone number used when Forwarding = Phone
Datatype: String
Required: No

Forwarding Name

The User, Address, or Group to forward to when
Forwarding = User

Datatype: Entity
Required: No

Property Reference --- 91

Group Properties

Key

Description

Forwarding When

Specify which calls to forward. Enter Al | to
forward all calls, or Unanswer ed to forward
only unanswered calls.

Datatype: String
Required: No

Manager Group

The group of users permitted to manage this
group. Specify a group that has management
privileges.

Datatype: Group
Required: No

Member Domain Group

The group of users permitted to add themselves
to this group.

Datatype: Group
Required: No

Device Manager Group

The group of users permitted to manage the
devices for this group.

Datatype: Group
Required: No
Since: 4.1

Permissions

Permissions granted to members of this group.
For the properties in this set, a value of t r ue
explicitly grants that permission for the group.

Datatype: KeyedPropertySet
Required: No

Permissions.Perform System
Administration

Sets whether to grant permission to perform
system administration, which gives a group full
administrative privileges in the Administration
Console, and automatically grants those group
members every other permission.

This permission overrides any revoked
permissions inherited by membership in other
groups, except the revoked Perform Server
Administration permission itself.

Datatype: boolean
Required: No

92 --- Vocera Administration Interface Guide

Group Properties

Key Description
Permissions.Record Name Sets whether to grant permission to record
Prompts for Another User name prompts for other users, as well as groups

and address book entries. Name prompts
improve the usability of the Vocera system;
the Genie plays these name prompts when
necessary, instead of synthesizing speech.

Datatype: boolean

Required: No
Permissions.Log In as Another Sets whether to grant permission to log in
User as someone else, ignoring any voiceprint

authentication. This permission is useful when
an administrator needs to log in as another user
for whom voiceprint authentication has been
enabled.

Datatype: boolean
Required: No

Permissions.Call Internal Numbers Sets whether to grant permission to place calls
to internal telephone extensions by saying
the key phrase "Dial extension" (for example,
“Dial extension 4085"). This feature requires
Telephony Integration.

Datatype: boolean

Required: No
Permissions.Call Toll-Free Sets whether to grant permission to place calls
Numbers to phone numbers in toll-free calling areas. This

feature requires Telephony Integration.
Datatype: boolean
Required: No

Permissions.Call Toll Numbers Sets whether to grant permission to place calls
to phone numbers that are not in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean
Required: No

Property Reference --- 93

Group Properties

Key

Description

Permissions.Forward Calls to
Badges

Sets whether to grant permission to forward
incoming calls to other badges. When this
permission is granted, users can specify
forwarding options through either the User
Console or voice commands.

Datatype: boolean
Required: No

Permissions.Forward Calls to
Internal Numbers

Sets whether to grant permission to forward
incoming calls to internal phone numbers. This
feature requires Telephony Integration. When
this permission is granted, users can specify
forwarding options through either the User
Console or voice commands.

Datatype: boolean
Required: No

Permissions.Forward Calls to Toll-
Free Numbers

Sets whether to grant permission to forward
incoming calls to phone numbers in toll-free
calling areas. This feature requires Telephony
Integration. When this permission is granted,
users can specify forwarding options through
either the User Console or voice commands.

Datatype: boolean
Required: No

Permissions.Forward Calls to Toll
Numbers

Sets whether to grant permission to forward
incoming calls to phone numbers that are not
in toll-free calling areas. This feature requires
Telephony Integration. When this permission is
granted, users can specify forwarding options
through either the User Console or voice
commands.

Datatype: boolean
Required: No

Permissions.Initiate Broadcasts

Sets whether to grant permission to broadcast
to all users in a group at the same time.

Datatype: boolean
Required: No

94 --- locera Administration Interface Guide

Group Properties

Key Description
Permissions.Initiate Broadcasts to Sets whether to grant permission to broadcast
Everyone to all users in the Everyone group for your site.
Datatype: boolean
Required: No
Permissions.Initiate Urgent Sets whether to grant permission to broadcast
Broadcasts an urgent call to every member in a group at

the same time.

An urgent broadcast has priority and breaks
through to everyone’s badge, even if the badge
is blocking calls or is in DND mode. See the
Vocera User Guide for more information about
urgent broadcasts.

Datatype: boolean
Required: No

Permissions.Place Urgent Calls Sets whether to grant permission to place an
urgent call or initiate an urgent three-way
conference call.

An urgent call or urgent three-way conference
call has priority and breaks through to a badge,
even if the badge is blocking calls or is in DND
mode. See the Vocera User Guide for more
information about urgent calls.

Datatype: boolean

Required: No
Permissions.Call Users at Other Sets whether to grant permission to contact a
Sites user whose home site or current site is different

from the home site or current site of the caller.
Datatype: boolean
Required: No

Permissions.Join Conference Sets whether to grant permission to enter or
leave a conference.

Vocera does not require users to have a
permission to use a conference; that is, any
user who is in a conference has access to the
conference feature.

Datatype: boolean
Required: No

Property Reference --- 95

Group Properties

Key

Description

Permissions.Send Messages To
Everyone

Sets whether to grant permission to send a
message to all users in the Everyone group for
your site.

Datatype: boolean
Required: No

Permissions.Have Toll-Free Pager
Number

Sets whether to grant permission to have a
pager number that is in a toll-free calling area.
This feature requires Telephony Integration.

Vocera does not require users to have
permission to call pagers. If you allow users

the permission to have pager numbers, you are
implicitly allowing other users the permission to
call those numbers.

Datatype: boolean
Required: No

Permissions.Have Toll Pager
Number

Sets whether to grant permission to have a
pager number that is in a toll calling area. This
feature requires Telephony Integration.

Vocera does not require users to have
permission to call pagers. If you allow users

the permission to have pager numbers, you are
implicitly allowing other users the permission to
call those numbers.

Datatype: boolean
Required: No

Permissions.Require
Authentication to Log In

Sets whether group members must recite a
series of random digits when they log in. If the
voice does not match the recorded voiceprint,
users cannot log in.

This permission has no effect until a user records
a voiceprint. Also, this permission is effective
only if the Voice Prints Enabled system property
issettotrue.

Datatype: boolean
Required: No

96 - Vocera Administration Interface Guide

Group Properties

Key Description

Permissions.Require Sets whether group members must recite

Authentication to Play Messages a series of random digits when they play
messages. If the voice does not match
the recorded voiceprint, users cannot play
messages.

This permission has no effect until a user records
a voiceprint. Also, this permission is effective
only if the Voice Prints Enabled system property
issettotrue.

Datatype: boolean

Required: No
Permissions.Record your Sets whether to grant permission to record their
Voiceprint voiceprint. This permission is effective only if the
Voice Prints Enabled system property is set to
true.

Datatype: boolean
Required: No

Permissions.Erase your Voiceprint Sets whether to grant permission to erase their
previously-recorded voiceprints. This permission
is effective only if the Voice Prints Enabled
system property is settot r ue.

Datatype: boolean

Required: No
Permissions.Erase Voiceprint of Sets whether to grant permission to erase the
Another User voiceprint of another user. This permission is

effective only if the Voice Prints Enabled system
property is settot r ue.

Datatype: boolean

Required: No
Permissions.Locate Users or Sets whether to grant permission to locate other
Group Members users or group members. You can then issue

badge commands such as "Where is Melissa
Schaefer?” to find the physical location of a
user or group member. This feature is useful
only if location names have been defined and
access points have been assigned to locations.

Datatype: boolean
Required: No

Property Reference --- 97

Group Properties

Key

Description

Permissions.Have VIP Status

Sets whether to grant permission to complete a
call even when users are blocking calls or have
placed their badges in Do Not Disturb mode.

Datatype: boolean
Required: No

Permissions.Block and Accept
Calls

Sets whether to grant permission to issue the
Block and Accept voice commands to perform
selective call screening.

Beginning users who are granted this
permission may unintentionally block calls when
all they need is temporary use of the DND
button. You should enable these commands for
advanced users only.

This permission does not affect the ability to
block calls through the User Console.

Datatype: boolean
Required: No

Permissions.Record Utterances

Sets whether to grant permission to record
utterances during Genie interactions. Use
this permission for troubleshooting speech
recognition problems.

Datatype: boolean
Required: No

Permissions.Monitor Users from
Administration Console

Sets whether to grant permission to view
information about logged-in group members
and their badges in the Administration Console.
This VAI permission is equivalent to the

View Users And Groups permission in the
Administration Console.

Datatype: boolean
Required: No

Permissions.Add/Edit/Delete Users

Sets whether to grant permission to maintain
the Vocera database by adding, editing, and

deleting all features in a user profile, such as

alternate spoken names, group membership,
and so forth.

Datatype: boolean
Required: No

98 - Vocera Administration Interface Guide

Group Properties

Key

Description

Permissions.Add/Edit/Delete
Temporary Users

Sets whether to grant permission to maintain
the Vocera database by adding, editing, and
deleting all features of the profiles of temporary
users.

Datatype: boolean
Required: No

Permissions.Edit Users

Sets whether to grant permission to maintain
the Vocera database by editing existing user
profiles.

Datatype: boolean
Required: No

Permissions.Add/Edit/Delete
Address Book Entries

Sets whether to grant permission to maintain
the Vocera database by adding, editing, and
deleting address book entries. Also grants
permission to record a spoken name for address
book entries.

Datatype: boolean
Required: No

Permissions.Access Genie from
Phone Using Caller ID

Sets whether to grant permission to call the
Vocera hunt number from a phone and access
the Genie using a caller ID associated with the
phone. The caller's ID is matched against a
user's phone number in the Vocera database.

Datatype: boolean
Required: No
Since: 4.1

Permissions.Perform System
Device Management

Sets whether to grant permission to add, edit,
and delete devices and view the Status Monitor.

Datatype: boolean
Required: No
Since: 4.1

AntiPermissions

For the properties in this set, a value of t r ue
explicitly revokes that permission for the group
even if members belong to another group that
grants the permission.

Datatype: KeyedPropertySet

Required: No

Property Reference --- 99

Group Properties

Key

Description

AntiPermissions.Perform System
Administration

Sets whether to revoke permission to perform
system administration. When this permission
is revoked, the group no longer has full
administrative privileges in the Administration
Console, and members are no longer granted
every other permission.

Datatype: boolean
Required: No

AntiPermissions.Record Name
Prompts for Another User

Sets whether to revoke permission to record
name prompts for other users, as well as groups
and address book entries.

Datatype: boolean
Required: No

AntiPermissions.Log In as Another
User

Sets whether to revoke permission to log
in as someone else, ignoring any voiceprint
authentication.

Datatype: boolean
Required: No

AntiPermissions.Call Internal
Numbers

Sets whether to revoke permission to place
calls to internal telephone extensions by saying
the key phrase "Dial extension" (for example,
“Dial extension 4085"). This feature requires
Telephony Integration.

Datatype: boolean
Required: No

AntiPermissions.Call Toll-Free
Numbers

Sets whether to revoke permission to place calls
to phone numbers in toll-free calling areas. This
feature requires Telephony Integration.

Datatype: boolean
Required: No

AntiPermissions.Call Toll Numbers

Sets whether to revoke permission to place
calls to phone numbers that are not in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean
Required: No

100 --- Vocera Administration Interface Guide

Group Properties

Key Description

AntiPermissions.Forward Calls to Sets whether to revoke permission to forward
Badges incoming calls to other badges.

Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Sets whether to revoke permission to forward
Internal Numbers incoming calls to internal phone numbers. This
feature requires Telephony Integration.

Datatype: boolean

Required: No
AntiPermissions.Forward Calls to Sets whether to revoke permission to forward
Toll-Free Numbers incoming calls to phone numbers in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean
Required: No

AntiPermissions.Forward Calls to Sets whether to revoke permission to forward

Toll Numbers incoming calls to phone numbers that are not
in toll-free calling areas. This feature requires
Telephony Integration.

Datatype: boolean

Required: No
AntiPermissions.Initiate Sets whether to revoke permission to broadcast
Broadcasts to all users in a group at the same time.
Datatype: boolean
Required: No
AntiPermissions.Initiate Sets whether to revoke permission to broadcast
Broadcasts to Everyone to all users in the Everyone group for your site.
Datatype: boolean
Required: No
AntiPermissions.Initiate Urgent Sets whether to revoke permission to broadcast
Broadcasts an urgent call to every member in a group at

the same time.
Datatype: boolean
Required: No

Property Reference - 101

Group Properties

Key

Description

AntiPermissions.Place Urgent
Calls

Sets whether to revoke permission to place
an urgent call or initiate an urgent three-way
conference call.

Datatype: boolean
Required: No

AntiPermissions.Call Users at
Other Sites

Sets whether to revoke permission to contact a
user whose home site or current site is different
from the home site or current site of the caller.

Datatype: boolean
Required: No

AntiPermissions.Join Conference

Sets whether to revoke permission to enter or
leave a conference.

To prevent a user from conferencing, revoke

the Join Conference permission and use the
Administration Console to remove the user from
a conference.

Datatype: boolean
Required: No

AntiPermissions.Send Messages
To Everyone

Sets whether to revoke permission to send a
message to all users in the Everyone group for
your site.

Datatype: boolean
Required: No

AntiPermissions.Have Toll-Free
Pager Number

Sets whether to revoke permission to have a
pager number that is in a toll-free calling area.
This feature requires Telephony Integration.

Datatype: boolean
Required: No

AntiPermissions.Have Toll Pager
Number

Sets whether to revoke permission to have a
pager number that is in a toll calling area. This
feature requires Telephony Integration.

Datatype: boolean
Required: No

102 --- Vocera Administration Interface Guide

Group Properties

Key

Description

AntiPermissions.Require
Authentication to Log In

Sets whether to revoke permission that would
reguire group members to recite a series of
random digits when they log in. If t r ue,
members can log in without authentication.

Datatype: boolean
Required: No

AntiPermissions.Require
Authentication to Play Messages

Sets whether to revoke permission that would
require group members to recite a series of
random digits when they play messages. If the
voice does not match the recorded voiceprint,
users cannot play messages. If t r ue, members
can play messages without authentication.

Datatype: boolean
Required: No

AntiPermissions.Record your
Voiceprint

Sets whether to revoke permission for group
members to record their voiceprint. This
permission is effective only if the Voice Prints
Enabled system property is set to t r ue.

Datatype: boolean
Required: No

AntiPermissions.Erase your
Voiceprint

Sets whether to revoke permission for group
members to erase their previously-recorded
voiceprints. This permission is effective only if
the Voice Prints Enabled system property is set
totrue.

Datatype: boolean
Required: No

AntiPermissions.Erase Voiceprint
of Another User

Sets whether to revoke permission to erase the
voiceprint of another user. This permission is
effective only if the Voice Prints Enabled system
property issettot r ue.

Datatype: boolean
Required: No

Property Reference --- 103

Group Properties

Key

Description

AntiPermissions.Locate Users or
Group Members

Sets whether to revoke permission to locate
other users or group members. This feature

is useful only if location names have been
defined and access points have been assigned
to locations.

Datatype: boolean
Required: No

AntiPermissions.Have VIP Status

Sets whether to revoke permission to complete
a call even when users are blocking calls or have
placed their badges in Do Not Disturb mode.

Datatype: boolean
Required: No

AntiPermissions.Block and Accept
Calls

Sets whether to revoke permission to issue the
Block and Accept voice commands to perform
selective call screening.

This permission does not affect the ability to
block calls through the User Console.

Datatype: boolean
Required: No

AntiPermissions.Record
Utterances

Sets whether to revoke permission to record
utterances during Genie interactions.

Datatype: boolean
Required: No

AntiPermissions.Monitor Users
from Administration Console

Sets whether to revoke the permission to

view information about logged-in group
members and their badges in the Administration
Console. This VAI permission is equivalent to
the View Users And Groups permission in the
Administration Console.

Datatype: boolean
Required: No

AntiPermissions.Add/Edit/Delete
Users

Sets whether to revoke permission to maintain
the Vocera database by adding, editing, and
deleting all features in a user profile, such as
alternate spoken names, group membership,
and so forth.

Datatype: boolean
Required: No

104 --- Vocera Administration Interface Guide

Group Properties

Key Description

AntiPermissions.Add/Edit/Delete Sets whether to revoke permission to maintain

Temporary Users the Vocera database by adding, editing, and
deleting all features of the profiles of temporary
users.

Datatype: boolean
Required: No

AntiPermissions.Edit Users Sets whether to revoke permission to maintain
the Vocera database by editing existing user
profiles.

Datatype: boolean
Required: No

AntiPermissions.Add/Edit/Delete Sets whether to revoke permission to maintain

Address Book Entries the Vocera database by adding, editing, and
deleting address book entries. Also revokes
permission to record a spoken name for address
book entries.

Datatype: boolean
Required: No

AntiPermissions.Access Genie Sets whether to revoke permission to call the

from Phone Using Caller ID Vocera hunt number from a phone and access
the Genie using a caller ID associated with the
phone.

Datatype: boolean
Required: No
Since: 4.1

AntiPermissions.Perform System Sets whether to revoke permission to add, edit,
Device Management and delete devices and view the Status Monitor.

Datatype: boolean
Required: No
Since: 4.1

Property Reference - 105

Location Properties

Location Properties

The following table lists the properties of a Location. Locations are names of
places to which you assign one or more access points.

Since: 4.0

Table 22. Location properties

Key Description

Name Location name. The name must start with a
letter or digit. It must contain only letters, digits,
spaces, apostrophes ('), underscores (_), or
dashes (-). No other characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name Alternate spoken name for the location, if
needed. The alternate spoken name gives the
server an additional field to check, increasing
the chances that a location name will be
understood by the Genie.

Datatype: String
Maximum Length: 50 characters
Required: No

Description Description of the location. Example: H Q
Lobby

Datatype: String
Maximum Length: 100 characters
Required: No

Site Physical site of the access point.

If your organization has multiple sites connected
to the same Vocera server, specify the site that
represents the access point's physical location. If
your organization does not have multiple sites,
accept the default Global site.

Datatype: Site object, or a string representing
the site's internal name

Required: No

106 --- Vocera Administration Interface Guide

Location Properties

Key Description

Access Points Property set containing access points associated
with the location.

Datatype: IndexedPropertySet
Required: No

Access Points.* Represents each access point assigned to the
location. To enter an access point, type its MAC
address (12 hexadecimal characters).

Datatype: String
Maximum Length: 12 characters

Required: No

Neighbors Property set containing neighboring locations.
Datatype: IndexedPropertySet
Required: No

Neighbors.* Represents each neighboring location.

Datatype: Location object, or the internal
name of the location of a neighboring access
point

Required: No

Property Reference - 107

Site Properties

Site Properties

The following table lists the properties of a Site. In Vocera, a site is a distinct
physical location that shares a centralized Vocera server with one or more other
physical locations.

Since: 4.0

Table 23. Site properties

Key Description

Name Name of the site. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Note: If you change the name of a site that has
a Telephony server associated with it, you must

set the value of the VOCERA_SITE environment

variable on the Telephony server machine to the
name of the new site.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Spoken Name Alternate spoken name of the site. For example,
if users commonly refer to a site by a nickname
or an acronym, enter that variation here.

Datatype: String
Maximum Length: 50 characters
Required: No

Description Description of the site. Example: Intensive Care
Unit
Datatype: String
Maximum Length: 100 characters
Required: No

108 --- Vocera Administration Interface Guide

Site Properties

Key Description

Cost Center The site's cost center ID, which enables Vocera
to track system usage by site and potentially
allows an organization to charge sites for
relative usage.

Datatype: String
Maximum Length: 100 characters
Required: No

Time Zone The site's time zone. Enter a Windows Time
Zone string (such as "Etc/GMT+8", "America/
Los_Angeles", and "PST8PDT"), or "" (empty
string) to use the time zone of the Vocera
server.

Datatype: String
Required: No

Panic Group The group that receives emergency broadcasts
for this site.

Datatype: Group
Required: No
Since: 4.3

Inhibit Panic Chime If t r ue, emergency broadcasts are started
without an opening chime.

Datatype: boolean
Required: No
Since: 4.3

Telephony Info Property set containing telephony information
for this site.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Telephony Enabled If t r ue, telephony features are enabled for the
site.

Datatype: boolean

Required: No
Telephony Info.Telephony Type of telephony interface. Enter | P,
Interface Type Di gital, or Anal og.

Datatype: String
Required: No

Property Reference --- 109

Site Properties

Key

Description

Telephony Info.Telephony # of
Lines

Number of telephone lines.
Datatype: int

Required: Yes (if telephony is enabled for the
site)

Telephony Info.Telephony Protocol

Signaling protocol that your PBX uses at the
network layer.

For IP PBX integration, enter the following
value: SI P Version 2.0.

For Digital PBX integration, enter one of the
following values: | SDN PRI, EURO | SDN
PRI ,orWnk Start.

DO NOT update this property if Telephony
Interface Type = Anal og.

Datatype: String
Required: No

Telephony Info.Telephony ISDN
Protocol

ISDN protocol used by your PBX. Enter one of
the following values: NI 2, DMB, 5ESS, 4ESS,
NT1, CTR4, QTE, NE1, or QNT.

Datatype: String
Required: No

Telephony Info.Telephony Framing

Framing that your PBX uses at the physical layer.
Enter one of the following values: ESF, D4, or
CEPT1.

Update this property only if Telephony Interface
Type=Digital.

Datatype: String
Required: No

Telephony Info.Telephony Line
Code

Line code that your PBX uses at the physical
layer. Enter one of the following values: B8ZS,
AM , or HDB3.

Update this property only if Telephony Interface
Type=Digital.

Datatype: String
Required: No

110 --- Vocera Administration Interface Guide

Site Properties

Key

Description

Telephony Info.Area Code

Area code of the region in which the Vocera
server is installed.

Datatype: String
Maximum Length: 10 characters

Required: Yes (if telephony is enabled for the
site)

Telephony Info.Local Access

Sequence of numbers you use to get an outside
line. For example, a PBX might require you to
dial a 0 or a 9 or an 8 to get an outside line.

By default, Vocera prepends this access code to
any number within the local area code.

Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Long Distance
Access

Sequence of numbers you enter before placing
a long distance call. For example, a PBX system
might require you to dial a 9 to get an outside
line and then dial a 1 before a long-distance
telephone number. In this situation, enter 91.

By default, Vocera prepends this access code to
any number that includes an area code that is
not the local area code.

Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.System Phone
Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system. To
use this number with numeric pagers, enter an

asterisk after the last digit of the phone number.

Datatype: String
Maximum Length: 75 characters
Required: No

Property Reference -+~ 111

Site Properties

Key

Description

Phone Number

Telephony Info.Direct Access

Area code and phone number of the DID line
you set up for specially licensed user access to
the Vocera system. If you have not obtained
Vocera Access Anywhere user licenses or you
are not using ISDN or SIP signaling protocol, this
property should not be updated.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.1

Telephony Info.Voice Mail Access

Sequence of numbers you enter to access the
company's voice mail system.

A typical entry includes X, then the sequence
of digits that you dial to get into the voicemail
system from an internal phone, and possibly
special dialing characters such as the * or # to
indicate the end of the sequence.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Seven Digit Dialing

If t r ue, the area code is omitted from the
dialing sequence for a local call.

Datatype: boolean
Required: No

Telephony Info.PIN Setup

Template for adding a PIN to a dialing sequence
for long distance calls. A PIN template can
include digits, special characters, and PIN
macros.

Datatype: String
Maximum Length: 75 characters
Required: No

112 -+ Vocera Administration Interface Guide

Site Properties

Key

Description

Telephony Info.Default PIN

The default PIN for long distance calls for the
site.

If a telephony PIN is not specified in the user's
profile and the user does not belong to a
department group that has a PIN, then the site
PIN is used.

Datatype: String
Maximum Length: 75 characters
Required: No

Telephony Info.Telephony
Extension Length

Specify the number of digits in an extension, or
0 (zero) to allow variable length extensions.

Datatype: int
Required: No

Telephony Info.Access Code Info

By default, numbers in the local area code use
the Default Local Access Code and all others use
the Default Long-Distance Access Code. This
property set contains telephone numbers that
are exceptions to the access code policy. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet
Required: No

Telephony Info.Access Code
Info.*

Represents each defined access code exception
in the property set.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Access Code
Info.*.Number Range

KeyedPropertySet that defines the number
range for an access code exception.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Access Code
Info.* Number Range.Area Code

Area code for which the exception is defined.
Datatype: String

Maximum Length: 10 characters
Required: No

Property Reference - 113

Site Properties

Key

Description

Telephony Info.Access Code
Info.*.Number Range.Match Type

Type of number range to match. Enter one of
the following values: Al 'l , Starts Wth, or
Range.

Datatype: String
Required: No

Telephony Info.Access Code
Info.* .Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Access Code
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Access Code
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Access Code
Info.*.Access Code

Access code that the specified area code
requires.

Datatype: String
Maximum Length: 10 characters
Required: Yes (for each access code exception)

Telephony Info.Toll Info

By default, numbers in the local area code are
considered toll-free, and others are considered
to require toll-call permissions. This property set
contains telephone numbers that are exceptions
to the toll-call policy.

Datatype: IndexedPropertySet
Required: No

114 --- Vocera Administration Interface Guide

Site Properties

Key

Description

Telephony Info.Toll Info.*

Represents each defined toll info exception.
Each keyed set specifies an area code and
phone numbers that can be called even by users
who do not have toll-call permissions granted.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Toll Info.*.Number
Range

Property set that defines the number range for a
toll info exception.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Toll Info.* .Number
Range.Area Code

Area code for which the exception is defined.
Datatype: String

Maximum Length: 10 characters
Required: No

Telephony Info.Toll Info.* .Number
Range.Match Type

Type of number range to match. Enter one of
the following values: Al 'l , Starts Wth, or
Range.

Datatype: String
Required: No

Telephony Info.Toll Info.*.Number
Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters
Required: No

Telephony Info.Toll Info.*.Number
Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.Toll Info.* .Number
Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Property Reference --- 115

Site Properties

Key

Description

Telephony Info.Toll Info.*.Toll Free

If t r ue, the area code is toll free.
Datatype: boolean
Required: No

Telephony Info.Paging Info

Specifies properties for interacting with pagers.
Datatype: KeyedPropertySet
Required: No

Telephony Info.Paging Info.Pager
Number Length

Specify the number of digits in a pager number,
or 0 (zero) to allow variable length numbers.

Datatype: int
Required: No

Telephony Info.Paging
Info.Outside Page Setup

Template that determines how Vocera formats
the string passed to a pager outside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String
Required: No

Telephony Info.Paging Info.Inside
Page Setup

Template that determines how Vocera formats
the string passed to a pager inside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Voocera Telephony Configuration Guide.

Datatype: String
Required: No

Telephony Info.Paging
Info.Outside Page Setup for Dialln

Template that determines how Vocera formats
the string passed to an outside pager by a
person calling into the Vocera hunt group or
DID number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String
Required: No

116 --- Vocera Administration Interface Guide

Site Properties

Key

Description

Telephony Info.Paging Info.Inside
Page Setup for Dialln

Template that determines how Vocera formats
the string passed to an inside pager by a person
calling into the Vocera hunt group or DID
number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String
Required: No

Telephony Info.DID Info

Property set containing direct inward dialing
(DID) information.

Datatype: IndexedPropertySet
Required: No

Telephony Info.DID Info.*

Represents each defined range of direct inward
dialing (DID) numbers. Each keyed set specifies
a prefix and the range of phone numbers to use
for direct inward dialing.

Datatype: KeyedPropertySet
Required: No

Telephony Info.DID Info.*.Number
Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet
Required: No

Telephony Info.DID Info.*.Number
Range.Match Type

Type of number range to match. Enter one of
the following values: Al 'l , Starts Wth, or
Range.

Datatype: String
Required: No

Telephony Info.DID Info.*.Number
Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters

Required: No

Property Reference -~ 117

Site Properties

Key

Description

Telephony Info.DID Info.*.Number
Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.DID Info.*.Number
Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Telephony Info.DID Info.*.Prefix

Area code and prefix assigned to the range. For
example, if the local area code of the PBX is
408, and the corporate prefix for all extensions
is 790, you typically enter (408) - 790. In
some situations, your PBX administrator may
assign a different prefix for you to use.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Telephony Info.Dynamic Phone
Info

Property set that specifies a range of dynamic
phone extensions. This allows you to configure
Vocera to supply telephone extensions on
demand to users who need them.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Dynamic Phone
Info.Enabled

If t r ue, dynamic extensions are enabled.
Datatype: boolean
Required: No

Telephony Info.Dynamic Phone
Info.First

Specifies the first dynamic extension in the
range.

Datatype: String
Maximum Length: 7 characters
Required: No

118 -+ Vocera Administration Interface Guide

Site Properties

Key Description

Telephony Info.Dynamic Phone Specifies the last dynamic extension in the

Info.Last range. The Last value must be greater than the
First value.

Datatype: String
Maximum Length: 7 characters

Required: No
Telephony Info.Dynamic Phone Specifies the lifetime, in days or hours, of the
Info.Lifetime assignment of dynamic extensions. Enter O

(zero) to make the extensions permanent.
Datatype: int
Required: No

Telephony Info.Dynamic Phone Specifies whether the lifetime of dynamic
Info.Hours extensions is measured in hours (t r ue) or days
(f al se).

Datatype: boolean
Required: No
Since: 4.1

Telephony Info.Dynamic Phone The last allocated dynamic extension. Cannot
Info.Last Allocated be updated.

Datatype: String

Telephony Info.Shared Server Info Property set that contains information needed
to allow multiple sites to share a Telephony
server.

Datatype: IndexedPropertySet

Required: No
Telephony Info.Shared Server Represents each defined site that shares this
Info.* Telephony server. Each keyed set specifies the

site, hunt group number, and reserved range of
lines for incoming calls.

Datatype: KeyedPropertySet
Required: No

Telephony Info.Shared Server Principal site for which Telephony is enabled.

Info.* Site Datatype: Site object, or a string representing

the site's internal name.
Required: No

Property Reference - 119

Site Properties

Key

Description

Telephony Info.Shared Server
Info.*.System Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system.

Datatype: String
Maximum Length: 75 characters

Telephony Info.Shared Server
Info.* First Reserved Line No

First of the reserved lines for incoming calls.
Datatype: String

Telephony Info.Shared Server
Info.*.Reserved Line Count

Number of reserved lines for incoming calls.
Datatype: int

Telephony Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls
through the tie line to the selected site that
is sharing the principal's telephony server.
Alternatively, this field could also be used to
specify a prefix for Direct Inward Dialing (DID)
numbers at the selected site.

Datatype: String
Since: 4.1

Telephony Info.Call Signaling
Address

The IP address of your IP PBX or VoIP gateway.
By default, port 5060 is used. If you need to
change the port, enter the call signaling address
in the form IP_Address:Port.

Datatype: String
Maximum Length: 75 characters
Since: 4.3

Telephony Info.Cisco Info

Property set containing default Cisco integration
properties.

Datatype: KeyedPropertySet
Required: No
Since: 4.3

Telephony Info.Cisco Info.Enabled

Datatype: boolen
Required: No
Since: 4.3

Telephony Info.Cisco
Info.Extension Mobility Enabled

Datatype: boolean
Required: No
Since: 4.3

120 --- Vocera Administration Interface Guide

Site Properties

Key Description

Telephony Info.Cisco Info.Phone The voice access number for CUCM. This
number should match the route pattern/number
for the Vocera SIP trunk. You can find route
patterns in CUCM Console by choosing Call
Routing > Route/Hunt > Route Pattern.

Datatype: String
Maximum Length: 75 characters

Required: No

Since: 4.3
Telephony Info.Cisco Info.First The first phone line used for the internal range
Line of Vocera lines.

Datatype: String
Maximum Length: 7 characters

Required: No

Since: 4.3
Telephony Info.Cisco Info.Last The last phone line used for the internal range
Line of Vocera lines.

Datatype: String
Maximum Length: 7 characters

Required: No

Since: 4.3
Telephony Info.Cisco Info.IP The IP address of the CUCM in dotted-decimal
Address notation (for example, 192.168.15.10).

Datatype: String

Maximum Length: 50 characters
Required: No

Since: 4.3

Telephony Info.Cisco Info.User The Vocera application user ID for CUCM.
Name Datatype: String

Maximum Length: 50 characters
Required: No

Since: 4.3

Property Reference - 121

Site Properties

Key

Description

Telephony Info.Cisco
Info.Password

The Vocera application user ID for CUCM. Use
only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administration Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: No
Since: 4.3

122 --- Vocera Administration Interface Guide

User Properties

User Properties
The following table lists the properties of a User.

Since: 4.0

Table 24. User properties

Key Description

User ID Vocera user ID. Enter an ID that is not already
assigned to another user on the system, being
careful to choose a name that you and the user
can easily remember. The user ID is not case-
sensitive.

The User ID must start with a letter or digit. It
must contain only letters, digits, spaces, periods
("), underscores (_), or dashes (-). No other
characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Password The user's Vocera password. The password is
case-sensitive. Use this property to create or
update the user's password.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: No

Property Reference --- 123

User Properties

Key

Description

Phone Password

Password used to authenticate the user when
accessing the Genie from a phone.

Important: Your application should restrict
the phone password to be between 5 and 15
characters consisting of letters or numbers.
Special characters are not allowed. VAl itself
does not restrict the length of passwords or
prevent you from entering a password with
invalid characters.

Datatype: String
Required: No
Since: 4.1

Last Name

The user's last name. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

First Name

The user's first name. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Alt Spoken Names

Property set containing up to three variations of
the spoken name of the user.

Datatype: IndexedPropertySet
Required: No

Alt Spoken Names.*

Represents each Alternate Spoken Name in the
property set.

Datatype: String
Maximum Length: 50 characters
Required: No

124 --- Vocera Administration Interface Guide

User Properties

Key Description

Ident Phrase An identifying phrase that distinguishes this
user from others with the same name. Example:
Rita Clark in Staffing

Datatype: String
Maximum Length: 100 characters
Required: No

Email Address An optional email address, which allows users
to send voice messages as an email attachment.
Example: j doe@ocer a. com

Datatype: String
Maximum Length: 40 characters
Required: No

Desk Phone The desk phone number or extension for the
user.

Datatype: String
Maximum Length: 75 characters
Required: No

Cell Phone The user's cell phone number. You can enter
digits, special dialing characters, or special
dialing macros.

Datatype: String
Maximum Length: 75 characters
Required: No

Home Phone The user's home phone number. You can enter
digits, special dialing characters, or special
dialing macros.

Datatype: String
Maximum Length: 75 characters

Required: No

Pager Phone The user's pager number. You can enter digits,
special dialing characters, or special dialing
macros.

Datatype: String
Maximum Length: 75 characters
Required: No

Property Reference - 125

User Properties

Key

Description

Dynamic Phone

The user's dynamically assigned phone
extension. Cannot be updated.

Datatype: String

Vocera Phone

The user's Vocera phone extension.
Datatype: String

Maximum Length: 75 characters
Required: No

Since: 4.1 SP4

Conference Group

The current conference group for the user. A
user can have only one conference group at a
time. You must specify a valid group name.

Datatype: String

Employee ID

Optional unique value that identifies a Vocera
user.

Datatype: String
Maximum Length: 50 characters
Required: No

Cost Center

The user's cost center ID, which enables Vocera
to track system usage by site and potentially
allows an organization to charge sites for
relative usage.

Datatype: String
Maximum Length: 100 characters
Required: No

PIN

Specify a value of the PIN for long distance
calls. A telephony PIN allows an organization to
authorize or account for telephone usage and
to distribute telephone costs among different
users, departments, or sites. A PIN can include
digits, special characters, and PIN macros.

Datatype: String
Maximum Length: 75 characters
Required: No

126 --- Vocera Administration Interface Guide

User Properties

Key Description

Site The user's home site. If you don't specify a site,
the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

Expire Time If the user is a temporary user, this property
specifies when the profile expires. Enter a date
with the format mm/dd/yyyy. The date must be
later than the current date.

Datatype: String
Required: No

Call Blocking Defines the default call blocking behavior for
any users or groups not specified in the Block
List or Accept List. Enter one of the following
values: Accept or Bl ock.

Datatype: String
Required: No

Block List Property set containing users or groups whose
calls are blocked.

Datatype: IndexedPropertySet
Required: No

Block List.* Represents each user or group whose calls are
blocked.

Datatype: Entity (User or Group)
Required: No

Accept List Property set containing users or groups whose
calls are accepted (not blocked).

Datatype: IndexedPropertySet
Required: No

Accept List.* Represents each user or group whose calls are
accepted (not blocked).

Datatype: Entity (User or Group)

Required: No

Property Reference -~ 127

User Properties

Key

Description

Buddies

Property set containing the user's buddies. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet
Required: No

Buddies.*

Represents each defined buddy (personal
contact) in the property set.

Datatype: KeyedPropertySet
Required: No

Buddies.*.Name

Contact, User, or Group object that identifies
the buddy.

Datatype: Entity object (Contact, User, or
Group)

Required: Yes

Buddies.*.Nick Name

Name used to call the buddy. The name must
start with a letter or digit. It must contain
only letters, digits, spaces, apostrophes

("), underscores (_), or dashes (-). No other
characters are allowed.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Buddies.*.VIP

If t r ue, the buddy has VIP status and can call
the user even when the user is blocking calls or
in DND mode.

Datatype: boolean
Required: No

Buddies.*.RingTone

One of the available ring tones, for example,

Ri ng- Tone- 01, R ng- Tone- 02, and so
on. When the buddy calls the user, the specified
ring tone is used.

Datatype: String

Required: No

128 --- Vocera Administration Interface Guide

User Properties

Key Description

Verbal Call Announcement If t r ue, the caller's name will be announced
after the ring tone.

Datatype: boolean
Required: No

Verbal Genie Greeting If t r ue, the user will hear a spoken greeting
("Vocera") after pressing the call button.

Datatype: boolean
Required: No

Tonal Genie Greeting If t r ue, the user will hear a short tone after
pressing the call button.

Datatype: boolean
Required: No

Auto Answer If t r ue, incoming calls are connected
immediately, without asking the user whether
he wants to take the call.

Datatype: boolean
Required: No

Auto Who Called If t rue, the user can press the Call button on
the badge to play an announcement of the
names of callers who unsuccessfully tried to
call since the last time the user pressed the Call
button, and who left messages.

Datatype: boolean
Required: No

Out Of Range Alert If t r ue, the user will hear a warning tone
when the badge moves out of the range of the
wireless network.

Datatype: boolean
Required: No

Low Battery Alert If t r ue, the badge will warn the user whenever
the battery needs to be recharged.

Datatype: boolean
Required: No

Property Reference --- 129

User Properties

Key

Description

Auto Logout

If t r ue, the user will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean
Required: No

VMessage Alert

If t r ue, the user will hear an alert tone when
he receives a new voice message.

Datatype: boolean
Required: No

TMessage Alert

If t r ue, the user will hear an alert tone when
he receives a new text message.

Datatype: boolean
Required: No

Disable Alerts In DND

If t rue, all alerts are suppressed when the
user's badge is in Do Not Disturb (DND) mode.

Datatype: boolean
Required: No

Play Older Messages First

If t r ue, messages are played in the order in
which they are received. Otherwise, messages
are played in reverse order (newest first).

Datatype: boolean
Required: No

Timestamp Played Messages

If t rue, the user will hear the date and
time each message was sent when he plays
messages.

Datatype: boolean
Required: No

Fast Call Setup

Ift rue, a call is connected as soon as the
recipient accepts it. Otherwise, the Genie
always completes the call announcement before
connecting the call.

Datatype: boolean
Required: No

130 --- Vocera Administration Interface Guide

User Properties

Key

Description

VMessage Reminder

If t r ue, the user will hear a tone every 10
minutes until he retrieves new voice messages.

Datatype: boolean
Required: No

TMessage Reminder

If t r ue, the user will hear a tone every 10
minutes until he retrieves new text messages.

Datatype: boolean
Required: No

DND Reminder

If t r ue, the user will hear a tone every 10
minutes while his badge is in Do Not Disturb
(DND) mode.

Datatype: boolean
Required: No

Enable Pages

If t r ue, the user can receive numeric pages.
Otherwise, pages are disabled.

Datatype: boolean
Required: No

Announce Through Speaker

If t r ue, Vocera plays incoming call and
message announcements through the badge
speaker when a headset is plugged into the
user's badge. Otherwise, both announcements
and actual calls or messages are played through
the headset.

Datatype: boolean
Required: No

Press Button To Accept Call

If t rue, the user is required to accept or reject
incoming calls by pressing the Call or DND/Hold
button. The user cannot say "Yes" and "No"
voice commands to accept and reject incoming
calls. This feature is useful in certain high-noise
environments.

Datatype: boolean
Required: No
Since: 4.1

Property Reference - 131

User Properties

Key

Description

Announce Group Calls

Ift r ue, when the user receives a call made to
a group, the Genie will identify the group that
was called.

Datatype: boolean
Required: No
Since: 4.1

Block Voice Messages

If t r ue, Vocera suppresses notifications when
the user receives a message.

Datatype: boolean
Required: No
Since: 4.1

Ring Tone

One of the available ring tones, for example,
Ri ng- Tone- 01, Ri ng- Tone- 02, and so
on. When the user receives a call on his badge,
the specified ring tone is used.

Datatype: String

Required: No

Genie Persona

One of the available Genie names, for example,
Mar k or Jean. The Genie is the voice that
prompts users when they interact with the
Vocera system.

Datatype: String
Required: No

Forwarding

Sets whether and where incoming calls are
forwarded. Enter one of the following values:
None, Desk Phone, Cel | Phone, Hore
Phone, Voi ce Mai |, O her Phone, or
O her User.

Datatype: String
Required: No

Forwarding Number

Phone number used when Forwarding = Ot her
Phone.

Datatype: String
Maximum Length: 30 characters
Required: No

132 -+ Vocera Administration Interface Guide

User Properties

Key

Description

Forwarding Name

User or Group to forward to when Forwarding =
O her User.

Datatype: User or Group
Required: No

Forwarding When

Specify when to forward calls. Enter one of the
following values: Never, Al | , Unanswer ed,
orOFfline.

Datatype: String
Required: No

Property Reference --- 133

System Properties

System Properties

Vocera system properties are accessed from the VAI class. Use the VAI methods
get Syst enProperti es() and updat eSyst enProperti es(), respectively,
to read and write these properties.

Since: 4.0

Table 25. System properties

Key Description

Product Major Version Vocera major version number. Example: given
a product version of 3.1, the product major
version is 3. Cannot be updated.

Datatype: String

Product Minor Version Vocera minor version number. Example: given
a product version of 3.1, the product minor
version is 1. Cannot be updated.

Datatype: String

Product Revision Vocera revision. Example: given a product
version of 3.1SP1, the product revision is SP1.
Given a product version of 3.1, the product
revision is 0. Cannot be updated.

Datatype: String

Time Last Update Time in milliseconds since 1/1/70 00:00 GMT
of the last update of a Vocera system property.
Cannot be updated.

Datatype: long

Self Register If t r ue, users can add themselves to the
Vocera system through the User Console.

Datatype: boolean
Required: No

Badge Log In If t r ue, voice commands that enable users
to log into and log out of badges are enabled.
Otherwise, users cannot share badges, and you
must specify each user's Badge ID.

Datatype: boolean

Required: No

134 --- Vocera Administration Interface Guide

System Properties

Key Description

Voice Prints Enabled If t r ue, the voiceprints feature is enabled to
provide more secure authentication when users
log in or check messages.

Datatype: boolean
Required: No

Auto Record Voice Prints If t r ue, the Vocera server automatically
prompts users to record their voiceprints the
next time they log in. Users are prompted only if
they have not yet recorded a voiceprint.

Datatype: boolean
Required: No

Admin Password Password for the Administrator user. Used only
for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: Yes

Dictation Enabled If t r ue, dictation features are enabled for
the Vocera system. Dictation feaures require a
special license. Separate configuration is also
required.

Datatype: boolean
Required: No
Since: 4.1

Block all VMI Messages in DND If t r ue, blocks all VMI messages—even urgent
messages—for users in Do Not Disturb mode.

Datatype: boolean
Required: No
Since: 4.3

Property Reference - 135

System Properties

Key

Description

in DND

Block non-urgent VMI Messages

If t r ue, blocks non-urgent VMI messages for
users in Do Not Disturb mode.

Datatype: boolean
Required: No
Since: 4.3

VMP Enabled

If t r ue, Vocera Messaging Platform (VMP)
integration is enabled.

Datatype: boolean
Required: No
Since: 4.3

Company

Name of your company or organization. This
value appears in reports and logs.

Datatype: String
Maximum Length: 100 characters
Required: No

Days To Keep Messages

Number of days to retain messages on the
system. The default is 7 days (one week).

Datatype: int
Required: No

Time To Sweep

Time of day, in milliseconds from midnight,
when messages are deleted from the Vocera
Server.

Datatype: long
Required: No

Locale

Identifies the server's locale. Examples: AU, CA,
GB, NZ, and US.

Datatype: String
Required: No

Override Info

Property set that specifies which system settings
override the corresponding property in the
Vocera User Console. A value of true indicates
an override. The Overridelnfo.Override Opt list
specifies the actual property values.

Datatype: KeyedPropertySet
Required: No

136 --- Vocera Administration Interface Guide

System Properties

Key Description
Overridelnfo.Verbal Call If t r ue, override each user's Verbal Call
Announcement Announcement property.

Datatype: boolean

Required: No
Overridelnfo.Verbal Genie If t r ue, override each user's Verbal Genie
Greeting Greeting property.

Datatype: boolean
Required: No

Overridelnfo.Tonal Genie Greeting If t r ue, override each user's Tonal Genie
Greeting property.

Datatype: boolean
Required: No

Overridelnfo.Auto Answer If t r ue, override each user's Auto Answer
property.
Datatype: boolean
Required: No

Overridelnfo.Auto Who Called If t r ue, override each user's Auto Who Called
property.
Datatype: boolean
Required: No

Overridelnfo.Out Of Range Alert If t r ue, override each user's Out Of Range
Alert property.

Datatype: boolean
Required: No

Overridelnfo.Low Battery Alert If t r ue, override each user's Low Battery Alert
property.
Datatype: boolean
Required: No

Overridelnfo.Auto Logout If t r ue, override each user's Auto Logout
property.
Datatype: boolean

Required: No

Property Reference - 137

System Properties

Key

Description

Overridelnfo.AP Tour

If t r ue, override each user's AP Tour property.
Datatype: boolean
Required: No

Overridelnfo.VMessage Alert

If t r ue, override each user's VMessage Alert
property.

Datatype: boolean

Required: No

Overridelnfo.TMessage Alert

If t r ue, override each user's TMessage Alert
property.

Datatype: boolean

Required: No

Overridelnfo.Disable Alerts In
DND

If t r ue, override each user's Disable Alerts In
DND property.

Datatype: boolean
Required: No

Overridelnfo.Play Older Messages
First

If t r ue, override each user's Play Older
Messages First property.

Datatype: boolean
Required: No

Overridelnfo.Timestamp Played
Messages

If t rue, override each user's Timestamp Played
Messages property.

Datatype: boolean
Required: No

Overridelnfo.Fast Call Setup

If t r ue, override each user's Fast Call Setup
property.

Datatype: boolean

Required: No

Overridelnfo.VMessage Reminder

If t r ue, override each user's VMessage
Reminder property.

Datatype: boolean
Required: No

138 --- Vocera Administration Interface Guide

System Properties

Key

Description

Overridelnfo.TMessage Reminder

If t r ue, override each user's TMessage
Reminder property.

Datatype: boolean
Required: No

Overridelnfo.DND Reminder

If t r ue, override each user's DND Reminder
property.

Datatype: boolean

Required: No

Overridelnfo.Enable Pages

If t r ue, override each user's Enable Pages
property.

Datatype: boolean

Required: No

Overridelnfo.Announce Through
Speaker

If t r ue, override each user's Announce
Through Speaker property.

Datatype: boolean
Required: No

Overridelnfo.Press Button To
Accept Call

Ift r ue, override each user's Press Button To
Accept Call property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Announce Group
Calls

If t r ue, override each user's Announce Group
Calls property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Block Voice
Messages

If t r ue, override each user's Block Voice
Messages property.

Datatype: boolean
Required: No

Property Reference --- 139

System Properties

Key

Description

Overridelnfo.Enable Genie Access
From Phone

If t r ue, override each user's Enable Genie
Access From Phone property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Ring Tone

If t r ue, override each user's Ring Tone
property.

Datatype: boolean
Required: No

OverrideInfo.Genie Persona

If t r ue, override each user's Genie Persona
property.

Datatype: boolean

Required: No

Overridelnfo.Override Opt Verbal
Call Announcement

Specifies the value of the overridden Verbal Call
Announcement property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Verbal
Genie Greeting

Specifies the value of the overridden Verbal
Genie Greeting property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Tonal
Genie Greeting

Specifies the value of the overridden Tonal
Genie Greeting property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Auto
Answer

Specifies the value of the overridden Auto
Answer property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Auto
Who Called

Specifies the value of the overridden Auto Who
Called property.

Datatype: boolean
Required: No

140 --- Vocera Administration Interface Guide

System Properties

Key

Description

Overridelnfo.Override Opt Out Of
Range Alert

Specifies the value of the overridden Out Of
Range Alert property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Low
Battery Alert

Specifies the value of the overridden Low
Battery Alert property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Auto
Logout

Specifies the value of the overridden Auto
Logout property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt AP
Tour

Specifies the value of the overridden AP Tour
property.

Datatype: boolean

Required: No

Overridelnfo.Override Opt
VMessage Alert

Specifies the value of the overridden VMessage
Alert property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt
TMessage Alert

Specifies the value of the overridden TMessage
Alert property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Disable
Alerts In DND

Specifies the value of the overridden Disable
Alerts In DND property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Play
Older Messages First

Specifies the value of the overridden Play Older
Messages First property.

Datatype: boolean
Required: No

Property Reference --- 141

System Properties

Key

Description

Overridelnfo.Override Opt
Timestamp Played Messages

Specifies the value of the overridden Timestamp
Played Messages property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Fast
Call Setup

Specifies the value of the overridden Fast Call
Setup property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt
VMessage Reminder

Specifies the value of the overridden VMessage
Reminder property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt
TMessage Reminder

Specifies the value of the overridden TMessage
Reminder property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt DND
Reminder

Specifies the value of the overridden DND
Reminder property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Enable
Pages

Specifies the value of the overridden Enable
Pages property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt
Announce Through Speaker

Specifies the value of the overridden Announce
Through Speaker property.

Datatype: boolean
Required: No

Overridelnfo.Override Opt Press
Button To Accept Call

Specifies the value of the overridden Press
Button To Accept Call property.

Datatype: boolean
Required: No
Since: 4.1

142 --- Vocera Administration Interface Guide

System Properties

Key

Description

Overridelnfo.Override Opt
Announce Group Calls

Specifies the value of the overridden Announce
Group Calls property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Override Opt Block
Voice Messages

Specifies the value of the overridden Block Voice
Messages property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Override Opt Enable
Genie Access From Phone

Specifies the value of the overridden Enable
Genie Access From Phone property.

Datatype: boolean
Required: No
Since: 4.1

Overridelnfo.Override Opt Ring
Tone

Specifies the value of the overridden Ring Tone
property. Must be one of the available ring
tones, for example, Ri ng- Tone- 01, Ri ng-
Tone- 02, and so on. When the user receives
a call on his badge, the specified ring tone is
used.

Datatype: String
Required: No

Overridelnfo.Override Opt Genie
Persona

Specifies the value of the overridden Genie
Persona property. Must be one of the available
Genie names, for example, Mar k or Jean. The
Genie is the voice that prompts users when they
interact with the Vocera system.

Datatype: String
Required: No

Mail Info

Property set containing email properties.
Datatype: KeyedPropertySet
Required: No

Property Reference --- 143

System Properties

Key

Description

Mail Info.Server Type

Mail server type that matches the protocol
supported by your email server. Enter one of the
following values: pop3 or i map.

Datatype: String
Required: No

Mail Info.Host

Name of the POP or IMAP server that
receives and stores your email. Example:
mai | . your conpany. com

Datatype: String
Maximum Length: 60 characters
Required: No

Mail Info.User Name

Address or ID of the Vocera system mailbox
that the IT administrator reserved for

email sent to Vocera badges (for example,
vocerabadge@yourcompany.com).

Datatype: String
Maximum Length: 50 characters
Required: No

Mail Info.Password

Password the Vocera server must use to log in
to the Vocera system mailbox. Use only for
update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: No

Mail Info.SMTP Host

Name of the server used for outgoing mail.
Example: mai | . your conpany. com

Datatype: String
Maximum Length: 60 characters
Required: No

144 --- Vocera Administration Interface Guide

System Properties

Key Description

Mail Info.SMTP User Name User name or address used to log into the
outgoing mail server.

Datatype: String
Maximum Length: 50 characters
Required: No

Mail Info.SMTP Password Password the Vocera server must use to log into
the outgoing mail server. Use only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: No

Mail Info.SMTP Authentication If t r ue, the mail server requires its subscribers
to provide authentication when sending an
email message.

Datatype: boolean
Required: No

Mail Info.Mail Check Interval Time interval in seconds that the system waits
to check for mail.

Datatype: int
Required: No

Mail Info.Default Recipient Email address to receive warning messages that
the Vocera server can issue. The Vocera server
sends alert messages to this address to notify
the user of significant system events, such as
low disk space and cluster failovers.

Datatype: String
Maximum Length: 50 characters

Required: No

Property Reference --- 145

System Properties

Key

Description

Mail Info.Domain Name

Domain name used in email addresses at your
site. Entering a value for this field ensures that
anyone can reply to email sent from the badge.

Datatype: String
Maximum Length: 60 characters
Required: No

Backup Info

Property set containing Vocera system backup
properties.

Datatype: KeyedPropertySet
Required: No

Backup Info.Auto Backup Enabled

If t r ue, automatic backups are enabled.
Datatype: boolean
Required: No

Backup Info.Auto Backup
Frequency

Frequency of automatic backups in days.
Datatype: int
Required: No

Backup Info.Auto Backup Time

Time of day in milliseconds from midnight on
which to start the backup.

Datatype: long
Required: No

Backup Info.Max Backup Files

Maximum number of backup files to save.

The maximum is the total number of all backup
files, regardless of whether they were created
automatically or manually. When you exceed
the maximum number of files, Vocera deletes
the oldest file and saves a new one.

Datatype: int
Required: Yes

Logging Info

Property set containing Vocera system logging
properties.

Datatype: KeyedPropertySet
Required: No

146 --- Vocera Administration Interface Guide

System Properties

Key Description

LoggingInfo.Auto Mail Enabled If t r ue, the Vocera Server automatically emails
logs to specified recipients.

Datatype: boolean

Required: No
LoggingInfo.Auto Mail Only On If t r ue, the Vocera Server automatically emails
Restart the most recently closed log file only when the

server restarts. Otherwise, the Vocera Server
automatically emails the most recently closed
log file immediately after the server opens a
new one; consequently, the system mails a log
file at least once a day.

Datatype: boolean
Required: No

LoggingInfo.Auto Mail Recipient First email address for automatic log mailing.
Datatype: String
Maximum Length: 60 characters
Required: No

LoggingInfo.Auto Mail Recipient Second email address for automatic log mailing.
2 Datatype: String
Maximum Length: 60 characters

Required: No

Department Info Property set containing speech recognition
options for departments.

Datatype: KeyedPropertySet

Required: No
Department Info.Rec First Name If t r ue, Vocera recognizes the first name of
and Department a user as well as the user's department when
someone issues a voice command. Example:
Bill in Housekeepi ng.

Datatype: boolean
Required: No

Property Reference - 147

System Properties

Key

Description

Department Info.Rec Full Name
and Department

If t r ue, Vocera recognizes the full name
(both first and last name) as well as the user's
department when someone issues a voice
command. Example: Jane Doe in Sal es.

Datatype: boolean
Required: No

Freq Dept Info

Property set containing frequently called
departments information.

Datatype: KeyedPropertySet
Required: No
Since: 4.3

Freq Dept Info.Frequent Dept
Preference Enabled

Indicates whether the use of frequently called
departments has been enabled.

Datatype: boolean
Required: No
Since: 4.3

Freq Dept Info.Frequent Dept
Adaptation Enabled

Indicates whether adaptation of frequently
called departments has been enabled. If

t r ue, this property enables the gathering of
call history data to calculate probabilities for
frequently called departments.

Datatype: boolean

Required: No

Since: 4.3

Cluster Info

Property set containing cluster information.
Datatype: KeyedPropertySet
Required: No

Cluster Info.Cluster Enabled

If t rue, clustering is enabled.
Datatype: boolean
Required: No

Cluster Info.Cluster Members

Property set containing cluster members.
Datatype: IndexedPropertySet
Required: No

148 --- Vocera Administration Interface Guide

System Properties

Key

Description

Cluster Info.Cluster Members.*

The set of properties for each member of the
cluster.

Datatype: KeyedPropertySet
Required: No

Cluster Info.Cluster
Members.* .Host

Numeric IP address of the machine.
Datatype: String

Maximum Length: 15 characters
Required: No

Cluster Info.Cluster
Members.* .Description

A brief description of the cluster member to
help identify the machine.

Datatype: String
Maximum Length: 100 characters
Required: No

Report Server Info

Property set containing Vocera Report Server
information.

Datatype: KeyedPropertySet
Required: No

Report Server Info.Report Server
IP Address

IP address of the Vocera Report Server.
Datatype: String

Maximum Length: 50 characters
Required: No

Device Info

Property set containing device information.
Datatype: KeyedPropertySet

Required: No

Since: 4.1

Device Info.Status Choices

Property set containing device status values.
Datatype: IndexedPropertySet

Required: No

Since: 4.1

Property Reference --- 149

System Properties

Key

Description

Device Info.Status Choices.*

Represents each device status value.
Datatype: String

Maximum Length: 50 characters
Required: No

Since: 4.1

Auto Logout Info

Property set that defines whether users will be
automatically logged out and the badge will
be turned off when the badge is placed in a
charger.

Datatype: KeyedPropertySet
Required: No
Since: 4.1

Auto Logout Info.Auto Logout
Enabled

If t r ue, users will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean
Required: No
Since: 4.1

Auto Logout Info.Auto Logout
Period

Number of minutes after which an inactive
badge user is logged off the Vocera system.
When the value is O (zero), this feature is
disabled.

Datatype: int
Required: No
Since: 4.1

Application Info

Property set that allows administrators to
designate information about VAI applications.

Datatype: KeyedPropertySet
Required: No
Since: 4.1 SP3

Application Info.Application
Server IP Address

IP address(es) of computers that are allowed to
run VAl applications.

Datatype: String

Maximum Length: 80 characters
Required: No

Since: 4.1 SP3

150 --- Vocera Administration Interface Guide

System Properties

Key

Description

Handoff Info

Property set that allows administrators to
integrate Vocera Server with Vocera Care
Transition (formerly Optivox), which allows you
to standardize, manage, and monitor hand-offs
in healthcare.

Datatype: KeyedPropertySet

Required: No

Since: 4.3

Handoff Info.Handoff Enabled

If t r ue, Care Transition integration with Vocera
Server is enabled.

Datatype: boolean
Required: No
Since: 4.3

Handoff Info.Handoff Customer
ID

Care Transition customer ID.
Datatype: String
Required: No

Since: 4.3

Handoff Info.Handoff Server
Phone

The phone number of the Care Transition IVR
system.

Datatype: String
Required: No
Since: 4.3

Handoff Info.Handoff Server IP
Addr

The IP address of the Care Transition server.
Datatype: String

Required: No

Since: 4.3

Default User

Property set containing default user properties
for newly-created users.

Datatype: KeyedPropertySet
Required: No

Property Reference - 151

System Properties

Key

Description

Default User.Password

Default password for new users. The password
is case-sensitive. Used only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String
Required: No

Default User.Verbal Call
Announcement

Ift rue, users will hear the caller's name
announced after the ring tone.

Datatype: boolean
Required: No

Default User.Verbal Genie
Greeting

If t r ue, users will hear a spoken greeting
("Vocera") after pressing the call button.

Datatype: boolean
Required: No

Default User.Tonal Genie Greeting

If t r ue, users will hear a short tone after
pressing the call button.

Datatype: boolean
Required: No

Default User.Auto Answer

If t r ue, incoming calls are connected
immediately, without asking users whether they
want to take the call.

Datatype: boolean
Required: No

Default User.Auto Who Called

If t rue, users can press the Call button on the
badge to play an announcement of the names
of callers who unsuccessfully tried to call since
the last time the user pressed the Call button,
and who left messages.

Datatype: boolean
Required: No

152 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default User.Out Of Range Alert

If t r ue, users will hear a warning tone when
the badge moves out of the range of the
wireless network.

Datatype: boolean
Required: No

Default User.Low Battery Alert

If t r ue, the badge will warn users whenever
the battery needs to be recharged.

Datatype: boolean
Required: No

Default User.Auto Logout

If t r ue, users will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean
Required: No

Default User.VMessage Alert

If t r ue, users will hear an alert tone when they
receive a new voice message.

Datatype: boolean
Required: No

Default User. TMessage Alert

If t r ue, users will hear an alert tone when they
receive a new text message.

Datatype: boolean
Required: No

Default User.Disable Alerts In DND

If t rue, all alerts are suppressed when a user's
badge is in Do Not Disturb (DND) mode.

Datatype: boolean
Required: No

Default User.Play Older Messages
First

If t r ue, messages are played in the order in
which they are received. Otherwise, messages
are played in reverse order (newest first).

Datatype: boolean
Required: No

Default User.Timestamp Played
Messages

If t r ue, users will hear the date and time each
message was sent when they play messages.

Datatype: boolean
Required: No

Property Reference --- 153

System Properties

Key

Description

Default User.Fast Call Setup

Ift rue, a call is connected as soon as the
recipient accepts it. Otherwise, the Genie
always completes the call announcement before
connecting the call.

Datatype: boolean
Required: No

Default User.VMessage Reminder

If t r ue, users will hear a tone every 10 minutes
until they retrieve new voice messages.

Datatype: boolean
Required: No

Default User.TMessage Reminder

If t rue, users will hear a tone every 10 minutes
until they retrieve new text messages.

Datatype: boolean
Required: No

Default User.DND Reminder

If t r ue, users will hear a tone every 10 minutes
while their badges are in Do Not Disturb (DND)
mode.

Datatype: boolean
Required: No

Default User.Enable Pages

If t r ue, users can receive numeric pages.
Otherwise, pages are disabled for new users.

Datatype: boolean
Required: No

Default User. Announce Through
Speaker

If t r ue, Vocera plays incoming call and
message announcements through the badge
speaker when a headset is plugged into the
user's badge. Otherwise, both announcements
and actual calls or messages are played through
the headset.

Datatype: boolean
Required: No

154 --- Vocera Administration Interface Guide

System Properties

Key Description
Default User.Block Voice If t r ue, Vocera suppresses notifications when
Messages a user receives a message. However, the user

may still hear a voice message alert tone (if the
Voice Message Alert option is selected), and a
telephone icon appears on the badge display
when the user has unplayed voice messages.

Datatype: boolean
Required: No
Since: 4.1

Default User.Enable Genie Access If t r ue, it enables the ability to access the
From Phone Genie from a telephone to perform Vocera
functions other than basic calling.

The number of users that can use the phone
access feature is controlled by your Vocera
license. Only users that have been enabled
to use the phone access feature can take
advantage of this feature.

Datatype: boolean
Required: No
Since: 4.1

Default User.Ring Tone One of the available ring tones, for example,
Ri ng- Tone- 01, Ri ng- Tone- 02, and so
on. When a user receives a call on his badge,
the specified ring tone is used.

Datatype: String

Required: No

Default User.Genie Persona One of the available Genie names, for example,
Mar k or Jean. The Genie is the voice that
prompts users when they interact with the
Vocera system.

Datatype: String
Required: No

Default Site Property set containing default site properties.
Datatype: KeyedPropertySet
Required: No

Property Reference --- 155

System Properties

Key

Description

Default Site.Telephony Info

Property set containing default telephony
properties.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony
Info.Telephony Enabled

If t r ue, telephony features are enabled for the
site.

Datatype: boolean
Required: No

Default Site.Telephony
Info.Telephony Interface Type

Type of telephony interface. Enter | P,
Di gital, or Anal og.

Datatype: String
Required: No

Default Site.Telephony
Info.Telephony # of Lines

Number of telephone lines.
Datatype: int

Required: Yes (if telephony is enabled for the
site)

Default Site.Telephony
Info.Telephony Protocol

Signaling protocol that your PBX uses at the
network layer.

For IP PBX integration, enter the following
value: SI P Version 2.0.

For Digital PBX integration, enter one of the
following values: | SDN PRI, EURO | SDN
PRI, orWnk Start.

DO NOT update this property if Telephony
Interface Type = Anal og.

Datatype: String
Required: No

Default Site.Telephony
Info.Telephony ISDN Protocol

ISDN protocol used by your PBX. Enter one of
the following values: NI 2, DMS, 5ESS, 4ESS,
NT1, CTR4, QTE, NE1, or QNT.

Datatype: String
Required: No

156 --- Vocera Administration Interface Guide

System Properties

Key Description

Default Site.Telephony Framing that your PBX uses at the physical layer.
Info.Telephony Framing Enter one of the following values: ESF, D4, or
CEPT1.

Update this property only if Telephony Interface
Type=Digital.

Datatype: String
Required: No

Default Site.Telephony Line code that your PBX uses at the physical
Info.Telephony Line Code layer. Enter one of the following values: B8ZS,
AM , or HDB3.

Update this property only if Telephony Interface
Type=Digital .

Datatype: String
Required: No

Default Site.Telephony Info.Area Area code of the region in which the Vocera
Code server is installed.

Datatype: String
Maximum Length: 10 characters
Required: Yes (if telephony is enabled for the

site)
Default Site.Telephony Info.Local Sequence of numbers you use to get an outside
Access line. For example, a PBX might require you to

dial a 0 or a 9 or an 8 to get an outside line.

By default, Vocera prepends this access code to
any number within the local area code.

Datatype: String
Maximum Length: 10 characters
Required: No

Property Reference - 157

System Properties

Key

Description

Default Site.Telephony Info.Long
Distance Access

Sequence of numbers you enter before placing
a long distance call. For example, a PBX system
might require you to dial a 9 to get an outside
line and then dial a 1 before a long-distance
telephone number. In this situation, enter 91.

By default, Vocera prepends this access code to
any number that includes an area code that is
not the local area code.

Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony
Info.System Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system. To
use this number with numeric pagers, enter an

asterisk after the last digit of the phone number.

Datatype: String
Maximum Length: 75 characters
Required: No

Default Site.Telephony Info.Direct
Access Phone Number

Area code and phone number of the DID line
you set up for specially licensed user access to
the Vocera system. If you have not obtained
Vocera Access Anywhere user licenses or you
are not using ISDN or SIP signaling protocol, this
property should not be updated.

Datatype: String

Maximum Length: 75 characters
Required: No

Since: 4.1

Default Site.Telephony Info.Voice
Mail Access

Sequence of numbers you enter to access the
company's voice mail system.

A typical entry includes X, then the sequence
of digits that you dial to get into the voicemail
system from an internal phone, and possibly
special dialing characters such as the * or # to
indicate the end of the sequence.

Datatype: String
Maximum Length: 20 characters
Required: No

158 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default Site.Telephony Info.Seven
Digit Dialing

If t r ue, the area code is omitted from the
dialing sequence for a local call.

Datatype: boolean
Required: No

Default Site.Telephony Info.PIN
Setup

Template for adding a PIN to a dialing sequence
for long distance calls. A PIN template can
include digits, special characters, and PIN
macros.

Datatype: String
Maximum Length: 75 characters
Required: No

Default Site.Telephony
Info.Default PIN

The default PIN for long distance calls.

If a telephony PIN is not specified in the user's
profile and the user does not belong to a
department group that has a PIN, then the site
PIN is used.

Datatype: String
Maximum Length: 75 characters
Required: No

Default Site.Telephony
Info.Telephony Extension Length

Specify the number of digits in an extension, or
0 (zero) to allow variable length extensions.

Datatype: int
Required: No

Default Site.Telephony Info.Access
Code Info

By default, numbers in the local area code use
the Default Local Access Code and all others use
the Default Long-Distance Access Code. This
property set contains telephone numbers that
are exceptions to the access code policy. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.Access
Code Info.*

Represents each defined access code exception
in the property set.

Datatype: KeyedPropertySet
Required: No

Property Reference --- 159

System Properties

Key

Description

Default Site.Telephony Info.Access
Code Info.*.Number Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.Area
Code

Area code for which the exception is defined.
Datatype: String

Maximum Length: 10 characters
Required: No

Default Site.Telephony
Info.Access Code Info.*.Number
Range.Match Type

Type of number range to match. Enter one of
the following values: Al | , Starts Wth, or
Range.

Datatype: String
Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.Starts
With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Access
Code Info.*.Access Code

Access code that the specified area code
requires.

Datatype: String
Maximum Length: 10 characters
Required: Yes (for each access code exception)

160 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default Site.Telephony Info.Toll
Info

By default, numbers in the local area code are
considered toll-free, and others are considered
to require toll-call permissions. This property set
contains telephone numbers that are exceptions
to the toll-call policy.

Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.Toll
Info.*

Represents each defined toll info exception.
Each keyed set specifies an area code and
phone numbers that can be called even by users
who do not have toll-call permissions granted.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range

Property set that defines the number range for a
toll info exception.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.Area Code

Area code for which the exception is defined.
Datatype: String

Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.Match Type

Type of number range to match. Enter one of
the following values: Al 'l , Starts Wth, or
Range.

Datatype: String
Required: No

Default Site.Telephony Info.Toll
Info.* .Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Property Reference - 161

System Properties

Key

Description

Default Site.Telephony Info.Toll
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.Toll
Info.*.Toll Free

Ift rue, the area code is toll free.
Datatype: boolean
Required: No

Default Site.Telephony
Info.Paging Info

Specifies properties for interacting with pagers.
Datatype: KeyedPropertySet
Required: No

Default Site.Telephony
Info.Paging Info.Pager Number
Length

Specify the number of digits in a pager number,
or 0 (zero) to allow variable length numbers.

Datatype: int
Required: No

Default Site.Telephony
Info.Paging Info.Outside Page
Setup

Template that determines how Vocera formats
the string passed to a pager outside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Voocera Telephony Configuration Guide.

Datatype: String
Required: No

Default Site.Telephony

Info.Paging Info.Inside Page Setup

Template that determines how Vocera formats
the string passed to a pager inside the Vocera
system. The default value of this property is
%N; %V %D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String
Required: No

162 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default Site.Telephony
Info.Paging Info.Outside Page
Setup for Dialln

Template that determines how Vocera formats
the string passed to an outside pager by a
person calling into the Vocera hunt group or
DID number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String
Required: No

Default Site.Telephony
Info.Paging Info.Inside Page Setup
for Dialln

Template that determines how Vocera formats
the string passed to an inside pager by a person
calling into the Vocera hunt group or DID
number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String
Required: No

Default Site.Telephony Info.DID
Info

Property set containing direct inward dialing
(DID) information.

Datatype: IndexedPropertySet
Required: No

Default Site.Telephony Info.DID
Info.*

Represents each defined range of direct inward
dialing (DID) numbers. Each keyed set specifies
a prefix and the range of phone numbers to use
for direct inward dialing.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony Info.DID
Info.* .Number Range.Match Type

Type of number range to match. Enter one of
the following values: Al | , Starts Wth, or
Range.

Datatype: String
Required: No

Property Reference --- 163

System Properties

Key

Description

Default Site.Telephony Info.DID
Info.*.Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts Wth.

Datatype: String
Maximum Length: 10 characters
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String
Maximum Length: 20 characters
Required: No

Default Site.Telephony Info.DID
Info.* .Prefix

Area code and prefix assigned to the range. For
example, if the local area code of the PBX is
408, and the corporate prefix for all extensions
is 790, you typically enter (408) - 790. In
some situations, your PBX administrator may
assign a different prefix for you to use.

Datatype: String
Maximum Length: 50 characters
Required: Yes

Default Site.Telephony
Info.Dynamic Phone Info

Property set that specifies a range of dynamic
phone extensions. This allows you to configure
Vocera to supply telephone extensions on
demand to users who need them.

Datatype: KeyedPropertySet
Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Enabled

If t r ue, dynamic extensions are enabled.
Datatype: boolean
Required: No

164 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default Site.Telephony
Info.Dynamic Phone Info.First

Specifies the first dynamic extension in the
range.

Datatype: String
Maximum Length: 7 characters
Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Last

Specifies the last dynamic extension in the
range. The Last value must be greater than the
First value.

Datatype: String
Maximum Length: 7 characters
Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Lifetime

Specifies the lifetime, in days or hours, of the
assignment of dynamic extensions. Enter O
(zero) to make the extensions permanent.

Datatype: int
Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Hours

Specifies whether the lifetime of dynamic
extensions is measured in hours (t r ue) or days
(fal se).

Datatype: boolean
Required: No
Since: 4.1

Default Site.Telephony
Info.Dynamic Phone Info.Last
Allocated

The last allocated dynamic extension. Cannot
be updated.

Datatype: String

Default Site.Telephony
Info.Shared Server Info

Property set that contains information needed
to allow multiple sites to share a Telephony
server.

Datatype: IndexedPropertySet
Required: No

Default Site.Telephony
Info.Shared Server Info.*

Represents each defined site that shares this
Telephony server. Each keyed set specifies the
site, hunt group number, reserved range of lines
for incoming calls, and the tie line prefix.

Datatype: KeyedPropertySet
Required: No

Property Reference - 165

System Properties

Key

Description

Default Site.Telephony
Info.Shared Server Info.* .Site

Principal site for which Telephony is enabled.
Datatype: Site object

Default Site.Telephony
Info.Shared Server Info.*.System
Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system.

Datatype: String

Default Site.Telephony
Info.Shared Server Info.* First
Reserved Line No

First of the reserved lines for incoming calls.
Datatype: String

Default Site.Telephony
Info.Shared Server Info.*.Reserved
Line Count

Number of reserved lines for incoming calls.
Datatype: int

Default Site.Telephony
Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls
through the tie line to the selected site that
is sharing the principal's telephony server.
Alternatively, this field could also be used to
specify a prefix for Direct Inward Dialing (DID)
numbers at the selected site.

Datatype: String
Since: 4.1

Default Site.Telephony Info.Call
Signaling Address

The IP address of your IP PBX or VoIP gateway.
By default, port 5060 is used. If you need to
change the port, enter the call signaling address
in the form IP_Address:Port.

Datatype: String
Maximum Length: 75 characters
Since: 4.3

Default Site.Telephony Info.Cisco
Info

Property set containing default Cisco integration
properties.

Datatype: KeyedPropertySet
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Enabled

Datatype: boolen
Required: No
Since: 4.3

166 --- Vocera Administration Interface Guide

System Properties

Key

Description

Default Site.Telephony Info.Cisco
Info.Extension Mobility Enabled

Datatype: boolean
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Phone

The voice access number for CUCM. This
number should match the route pattern/number
for the Vocera SIP trunk. You can find route
patterns in CUCM Console by choosing Call
Routing > Route/Hunt > Route Pattern.

Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.First Line

The first phone line used for the internal range
of Vocera lines.

Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.Last Line

The last phone line used for the internal range
of Vocera lines.

Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.IP Address

The IP address of the CUCM in dotted-decimal
notation (for example, 192.168.15.10).

Datatype: String
Required: No
Since: 4.3

Default Site.Telephony Info.Cisco
Info.User Name

The Vocera application user ID for CUCM.
Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.Password

The Vocera application user ID for CUCM.
Datatype: String

Required: No

Since: 4.3

Property Reference - 167

System Properties

168 --- Vocera Administration Interface Guide

Index

A

Address class, 26

Address properties, 82
administrators, tiered, 76
AntiPermissions, 38

authenticating VAl applications, 77

B

backup method, 65
badge status, 46
BadgeStatus class, 46
Buddies property, 28

buddy, 27
adding to list, 29
inside, 28
outside, 28

C

certificates
creating, 75

VAl methods, 73
checkADAdminCredentials method, 78
checkAdminCredentials method, 78
checkADUserCredentials method, 79
checkAppCredentials method, 79
checkUserCredentials method, 78
class hierarchy, 15
compiler, 17
connecting to server, 59
contact

creating, 28
Contact class, 28
Contact properties, 84

Index --- 169

controlling the server, 64
create method, 22
credentials, checking, 77

D
data

importing, 47
delete method, 24
deploying applications, 17
Device class, 30
Device properties, 85

E

emptyDatabase method, 65

entity
creating, 21
definition, 21
deleting, 24
internal name, 25
queries, 22
updating, 23

error codes, 61

errors, 71

exceptions, 71

G

getBackupFileNames method, 66
getBadgeStatus method, 46
getLicenselnfo method, 62
getMembers method, 36
getMessage method, 71
getProperties method, 52
getPropertyKeys method, 51
getResultCode method, 71
getServerStateString method, 62
getSystemProperties method, 62
Group class, 35

Group permissions, 38

Group properties, 87

H

handleReportStatus method, 60
handleServerStateChange method, 60
hardware requirements, 14
Hungarian notation, 14

170 --- Vocera Administration Interface Guide

|
importing data
from external database, 47
inside buddy, 28
adding to list, 29
internal name, 25

J
Javadocs, 14
JDK version, 17

L
libraries

Vocera, 14
license key, 15
Location class, 40
Location properties, 106
login credentials, 77

M

makeAppCertificateFile method, 74
makeCertificateFile method, 73
makeCertificateString method, 73
mc.bat, 75

messages, text, 50
moveEntitiesToSite method, 42
multiuser applications, 77

myVai, 14

()
open method, 59, 59, 60
openWithADLogin method, 61
openWithAppCertificateFile method, 74
openWithCertificateFile method, 74
openWithCertificateString method, 74
outside buddy, 28

creating, 28

P
Permissions, 38
persisting application data, 55
properties
Address, 82
Contact, 84
Device, 85

Index --- 171

Group, 87
Location, 106
Site, 108
system, 134
User, 123

reading application data, 55
restartServer method, 64

S
sample applications, 18
sending messages, 50
server

opening a connection, 59

states, 69

stopping and starting, 64
server properties

getting, 62

setting, 63
servlet, 78
Site class, 42
site properties, 43
Site properties, 108
software requirements, 14
startServer method, 64
stopServer method, 64
subgroups, 35
system properties

getting, 62

setting, 63
system requirements, 14

T
telephony properties, 43
text messages, 50
things VAl cannot do
load data from a CSV file, 14
tiered administration, 76

U
updateSystemProperties method, 63
User class, 44
User properties, 123
users
badge status, 46

172 -+ Vocera Administration Interface Guide

group membership, 45
identifying, 44
sending messages, 50

Vv
VAl 13

limitations, 14
VAl application IP addresses, 77
VAl properties, 134
VAl reference, 14
VAl-enabled license key, 15
version mismatch error, 18
VOCERA_LICENSE, 15

W

Web applications, 77
writing application data, 55

Index --- 173

174 --- Vocera Administration Interface Guide

	Vocera Administration Interface Guide
	Contents
	List of Figures
	List of Tables
	List of Examples

	Overview
	VAI Features
	VAI Limitations
	About VAI Documentation
	System Requirements
	Getting Started With VAI
	VAI Class Hierarchy
	Developing VAI Applications
	Using the Sample Applications
	Avoiding Version Mismatch Problems
	VAI Example

	Working With Entities
	Entity Operations
	Creating Entities
	Querying Entities
	Updating Entities
	Deleting Entities

	Using Internal Names
	Working with Addresses
	Working with Buddies and Contacts
	Working with Devices
	Creating a Device
	Updating a Device
	Getting Devices
	Getting the Color or Type of a Device
	Modifying Device Status Choices
	Uploading Badge Logs

	Working with Groups
	Getting Subgroups
	Managing Group Membership
	Managing Group Permissions

	Working with Locations
	Working with Sites
	Working with Users
	Identifying Users
	Users and Group Membership
	Badge Users and Badge Status
	Importing User Data
	Sending a Text Message

	Working With Properties
	Using Keyed Property Sets
	Using Indexed Property Sets
	Persisting Application Data

	Managing the Vocera Server
	Connecting to the Vocera Server
	Using the VAI.open() Method
	Result Codes for the open() Method

	Getting Vocera Server Properties
	Setting Vocera Server Properties
	Controlling the Vocera Server
	Managing the Vocera Database
	Monitoring the Vocera Server
	Vocera Server States

	Error Handling
	Using the VAIException Class

	Security Features
	Controlling Access
	Using the mc.bat Utility
	VAI and Tiered Administrators

	Encrypted Passwords
	Authenticating VAI Applications
	Best Practices for Multiuser Applications

	Property Reference
	Address Properties
	Contact Properties
	Device Properties
	Group Properties
	Location Properties
	Site Properties
	User Properties
	System Properties

	Index

