
Vocera Administration Interface Guide
Version 4.4.4

ii ··· Vocera Administration Interface Guide

Copyright © 2002-2015 Vocera Communications, Inc. All rights reserved.

Protected by US Patent Numbers D486,806; D486,807; 6,892,083; 6,901,255;

7,190,802; 7,206,594; 7,248,881; 7,257,415; 7,310,541; 7,457,751; AU

Patent Number AU 2002332828 B2; CA Patent Number 2,459,955; EEC Patent

Number ED 7513; and Japan Patent Number JP 4,372,547.

Vocera® is a registered trademark of Vocera Communications, Inc.

This software is licensed, not sold, by Vocera Communications, Inc. (“Vocera”).

The reference text of the license governing this software can be found at

www.vocera.com/legal. The version legally binding on you (which includes

limitations of warranty, limitations of remedy and liability, and other provisions)

is as agreed between Vocera and the reseller from whom your system was

acquired and is available from that reseller.

Certain portions of Vocera’s product are derived from software licensed by the

third parties as described at

Java® is a registered trademark of Oracle Corporation and/or its affiliates.

Microsoft®, Windows®, Windows Server®, Internet Explorer®, Excel®, and

Active Directory® are registered trademarks of Microsoft Corporation in the

United States and other countries.

All other trademarks, service marks, registered trademarks, or registered service

marks are the property of their respective owner/s. All other brands and/or

product names are the trademarks (or registered trademarks) and property of

their respective owner/s.

The contents of this document are Vocera proprietary and confidential.

Vocera Communications, Inc.

www.vocera.com

tel :: +1 408 882 5100

fax :: +1 408 882 5101

2015-04-18 11:50:51

Contents ··· iii

 Contents

Overview.. 13

VAI Features... 13
VAI Limitations... 14
About VAI Documentation... 14
System Requirements.. 14
Getting Started With VAI... 15

VAI Class Hierarchy... 15
Developing VAI Applications.. 16
Using the Sample Applications... 18
Avoiding Version Mismatch Problems...................................... 18
VAI Example... 18

Working With Entities... 21

Entity Operations.. 21
Creating Entities... 21
Querying Entities.. 22
Updating Entities.. 23
Deleting Entities.. 24

Using Internal Names.. 25
Working with Addresses.. 26
Working with Buddies and Contacts... 27
Working with Devices... 30

Creating a Device... 30
Updating a Device.. 31
Getting Devices.. 31
Getting the Color or Type of a Device..................................... 33
Modifying Device Status Choices.. 33
Uploading Badge Logs.. 34

Working with Groups.. 35
Getting Subgroups.. 35
Managing Group Membership... 36
Managing Group Permissions... 38

Working with Locations... 40
Working with Sites... 42
Working with Users.. 44

iv ··· Vocera Administration Interface Guide

Identifying Users... 44
Users and Group Membership.. 45
Badge Users and Badge Status... 46
Importing User Data.. 47
Sending a Text Message.. 50

Working With Properties.. 51

Using Keyed Property Sets... 51
Using Indexed Property Sets... 53
Persisting Application Data.. 55

Managing the Vocera Server.. 59

Connecting to the Vocera Server.. 59
Using the VAI.open() Method... 59
Result Codes for the open() Method....................................... 61

Getting Vocera Server Properties.. 62
Setting Vocera Server Properties... 63
Controlling the Vocera Server... 64
Managing the Vocera Database.. 65
Monitoring the Vocera Server.. 67

Vocera Server States.. 69

Error Handling... 71

Using the VAIException Class... 71

Security Features... 73

Controlling Access.. 73
Using the mc.bat Utility... 75
VAI and Tiered Administrators.. 76

Encrypted Passwords... 77
Authenticating VAI Applications... 77
Best Practices for Multiuser Applications....................................... 77

Property Reference.. 81

Address Properties.. 82
Contact Properties.. 84
Device Properties.. 85
Group Properties... 87
Location Properties.. 106
Site Properties... 108
User Properties... 123
System Properties.. 134

Contents ··· v

Index... 169

vi ··· Vocera Administration Interface Guide

Contents ··· vii

 List of Figures

1. Subgroups.. 36
2. Nested groups.. 37
3. Using mc.bat to create a certificate... 76
4. Servlet example... 78

viii ··· Vocera Administration Interface Guide

Contents ··· ix

 List of Tables

1. VAI system requirements.. 14
2. VAI libraries.. 17
3. VAI documentation.. 17
4. Methods for retrieving a set of devices.. 32
5. Methods for retrieving an individual device.................................... 32
6. Methods for distinguishing between users..................................... 44
7. BadgeStatus fields... 46
8. Methods for writing and reading application data........................... 56
9. Error codes for a failed connection... 62

10. Methods for querying the properties of a Vocera Server.................. 62
11. Methods for controlling the Vocera Server..................................... 64
12. Methods for managing a Vocera database..................................... 65
13. Methods for monitoring the Vocera Server..................................... 67
14. Vocera Server states.. 69
15. Methods for returning information about exceptions...................... 72
16. Methods for working with certificates... 73
17. Methods for working with certificates... 78
18. Address properties... 82
19. Contact properties... 84
20. Device properties... 85
21. Group properties... 87
22. Location properties.. 106
23. Site properties... 108
24. User properties.. 123
25. System properties.. 134

x ··· Vocera Administration Interface Guide

Contents ··· xi

 List of Examples

1. VAI program example.. 18
2. String representation of a KeyedPropertySet................................... 19
3. UserSet and User example.. 21
4. Property sets used to create users and locations............................. 22
5. Querying an entity.. 22
6. Updating the description of a location... 23
7. Deleting a user... 24
8. Removing members from a group... 24
9. Getting internal names for entities.. 25

10. Getting addresses for a site.. 26
11. Adding a contact.. 28
12. Adding an inside buddy... 29
13. Creating a device.. 30
14. Updating a device... 31
15. Getting devices... 32
16. Getting the color and type of a device.. 33
17. Modifying device status choices.. 33
18. Uploading badge logs.. 34
19. Getting subgroups... 36
20. Managing groups.. 37
21. Granting and revoking permissions for a group.............................. 39
22. Getting location information.. 40
23. Creating a location.. 41
24. Moving a group to another site.. 42
25. Omitting the area code from the dial string................................... 43
26. Getting groups for a user.. 45
27. Getting the current location for a badge....................................... 46
28. Importing users from an external database.................................... 47
29. SQL code for an external database.. 49
30. SQL code that populates the DEPT table.. 49
31. SQL code that populates the EMP table... 50
32. Sending a text message... 50
33. Getting property keys.. 51
34. Getting location properties... 52
35. Using a KeyedPropertySet to update an entity................................ 53

xii ··· Vocera Administration Interface Guide

36. Creating and querying an IndexedPropertySet................................ 53
37. Updating elements in an IndexedPropertySet.................................. 54
38. Writing and reading application data.. 56
39. Opening a connection... 60
40. Getting license information.. 63
41. Updating Vocera Server properties.. 63
42. Stopping and starting the Vocera Server.. 65
43. Restoring the Vocera database from a backup file........................... 66
44. Using VAIListener to monitor the Vocera Server.............................. 67
45. Catching an exception... 71
46. Getting exception messages and result codes................................. 72
47. Using certificates with application passwords................................. 74
48. Using certificates without application passwords............................. 75

Overview ··· 13

 Overview

The Vocera Administration Interface (VAI) is a Java API that enables you to

control and administer the Vocera system programmatically. Using VAI, you

can perform almost all the Administration Console and User Console functions

described in the Vocera Administration Guide and the Vocera User Console

Guide. Familiarize yourself with the Administration Console and the User

Console—structure, function, and features—before you start programming

with VAI.

VAI Features

Applications built using VAI can run on any machine (including non-Windows

platforms) that has network connectivity to the Vocera server. While VAI does

not build in GUI capability, it supports efficient data retrieval in the service

of GUI applications, and includes search methods and status callbacks that

facilitate the development of such applications.

Here are some of the things you can do with VAI:

• Administer the Vocera system

• Query and update system settings

• Create, edit, delete, and query Vocera entities (users, groups, etc.)

• Start and stop the Vocera Server

• Backup, restore, and empty the Vocera database

• Integrate Vocera with enterprise applications. For example, you could update

Vocera groups dynamically using data from a scheduling application.

• Integrate Vocera with backend databases. For example, you could populate

the Vocera database from your HR database.

• Create a customized Administration Console. For example, you could enable

access to selected features based on user roles.

 VAI Limitations

14 ··· Vocera Administration Interface Guide

VAI Limitations

The initial release of VAI has some limitations compared to the console

applications. VAI cannot:

• Load data from a CSV file.

• Operate the Data Checker.

However, in both cases, you can obtain the same effect in your VAI application

by writing your own code to perform that functionality.

About VAI Documentation

The Vocera Administration Interface Guide (this guide) explains how to develop

applications using VAI. It describes key VAI features and explains how to

perform common programming tasks.

Also, an HTML-based Javadoc reference to the VAI classes are in the \VAI\docs

\javadocs directory of the Vocera Developer Kit CD.

VAI documentation uses a simplified version of Hungarian notation to

indicate variable types in parameter declarations. For example, the prefix "i"

indicates an integer (as in iResultCode), the prefix "s" indicates a String

(as in sUserName), and the prefix "kps" indicates a KeyedPropertySet (as in

kpsUser).

Also, when myVai appears in the text or a code example, it refers to an instance

of the VAI class created to represent a connection to a Vocera server. See VAI

Example on page 18 for an example.

System Requirements

The following table lists the minimum hardware and software requirements for

developing applications using VAI.

Table 1. VAI system requirements

Component Requirement

Vocera libraries The classes that implement VAI are stored in server.jar. You
also need logi.crypto1.1.2.jar, which handles encryption
and decryption tasks, for example, when working with
passwords. Both libraries are installed on the Vocera Server
in the vocera\server\lib directory. They must be copied to
your development directory and added to the classpath of your
development machine.

Java Compiler JDK 6.0 (1.6)

Getting Started With VAI

Overview ··· 15

Component Requirement

Java Virtual
Machine

JRE 6.0 (1.6)

(Optional) IDE Any IDE or editor that can produce text files suitable for the
Java compiler.

Hardware RAM, CPU, and free disk space required by the Java compiler
and IDE.

License A VAI-enabled license key.

You enter a license key when you install the Vocera server. If
you are adding VAI to an existing Vocera installation, set the
system environment variable named VOCERA_LICENSE to a
VAI-enabled license key value. You can set this variable from
the Advanced page of the System settings Windows Control
Panel. Restart the computer to make the new license take
effect.

Getting Started With VAI

This section describes how you can get started developing applications with

VAI.

VAI Class Hierarchy

In general, VAI class names correspond to data displayed in the Administration

Console or the User Console. For example, the Location class encapsulates

the data displayed in the Locations screen in the Administration Console. There

are a few exceptions:

• The Address class and the AddressSet class correspond to Address Book

page in the Administration Console.

• The Contact class and the ContactSet class correspond to Buddies (more

specifically, to outside buddies) managed via the User Console.

• The Site class encapsulates data from the Telephony screen and the Sites

screen of the Administration Console.

The following list shows the VAI class hierarchy.

• class java.lang.Object

• class vai.BadgeStatus

• class vai.Entity

• class vai.Address

 Developing VAI Applications

16 ··· Vocera Administration Interface Guide

• class vai.Contact

• class vai.Device

• class vai.Group

• class vai.Location

• class vai.Site

• class vai.User

• class vai.EntitySet

• class vai.AddressSet

• class vai.ContactSet

• class vai.DeviceSet

• class vai.GroupSet

• class vai.LocationSet

• class vai.SiteSet

• class vai.UserSet

• class vai.LicenseInfo

• class vai.PropertySet

• class vai.IndexedPropertySet

• class vai.KeyedPropertySet

• class java.lang.Throwable (implements java.io.Serializable)

• class java.lang.Exception

• class vai.VAIException

• class vai.VAI

Developing VAI Applications

This section outlines the basic steps in developing an application using VAI.

To develop VAI applications:

1. Copy the following files from the %vocera_drive%\vocera\server\lib

directory of the Vocera Server into your development directory.

Developing VAI Applications

Overview ··· 17

Table 2. VAI libraries

File Description

server.jar and
logi.crypto1.1.2.jar

Vocera libraries

The classes that implement VAI are stored in
server.jar. You also need logi.crypto1.1.2.jar,
which handles encryption and decryption tasks,
for example, when working with passwords. Both
libraries are provided on the Vocera Developer
Kit CD. They must be in the classpath of your
development machine.

2. Copy the following files from the VAI\docs directory of the Vocera

Developer Kit CD into your development directory.

Table 3. VAI documentation

File Description

(Optional)
VAIDevGuide.pdf

An electronic version of the Vocera Administration
Interface Guide (this document).

(Optional) Javadocs
folder

An HTML-based Javadoc reference to the VAI classes.

3. Write the code to implement your client application.

You must have a Java compiler compatible with JDK 6.0 (1.6). You can write

and edit code using any IDE or editor that can produce text files suitable for

the Java compiler.

At run time, your application's classpath must include server.jar and

logi.crypto1.1.2.jar.

Also, a VAI-enabled license key must be installed on the Vocera server.

4. Deploy your application.

After you develop a VAI application, you’ll need to package its files so that

you or other users can install it. Many development environments include

tools for packaging and deploying applications.

If your application uses a certificate file for security, remember to deploy the

certificate file with the application.

 Using the Sample Applications

18 ··· Vocera Administration Interface Guide

Using the Sample Applications

On the Vocera Developer Kit CD, Vocera provides sample VAI applications

in the \VAI\samples directory. Each sample has its own Readme.txt file

that describes how to build and run the application, as well as any other

configuration information.

Before building and running a VAI sample application, make sure you copy the

latest server.jar file from the %vocera_drive%\vocera\server\lib directory of

the Vocera Server into your development directory.

Note: VAI sample applications are sample software provided solely to illustrate

the use of the API. Vocera provides the samples AS IS. You are solely responsible

for verifying their suitability for any specific purpose or application.

Avoiding Version Mismatch Problems

When you deploy your VAI application, always make sure that the Vocera Server

you are connecting to is at the same version or later of the server.jar file that

you are using in your application. Otherwise, your application may encounter

a server mismatch error and fail to connect to the server. If this happens, copy

the server.jar from the %vocera_drive%\vocera\server\lib directory on the

Vocera Server into your application's \lib folder. Generally, you should not need

to revise or rebuild your application unless it uses methods that have changed

since the version of server.jar on the Vocera Server.

VAI Example

Here's a simple code example that retrieves data from a Vocera server. A

discussion of the code follows the listing.

Example 1. VAI program example

import vai.*;
public class VAIDemo {
 public static VAI myVAI = new VAI();
 public static void main(String[] args) {

 try {
 myVai.open("192.168.1.1", "Administrator", "admin",
 null);
 KeyedPropertySet kps = myVai.getSystemProperties();
 System.out.println(kps.toString());
 myVai.close();
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
 }
}

VAI Example

Overview ··· 19

The example instantiates a VAI object to represent a connection to a Vocera

server. Throughout this documentation, when myVai appears in the text or a

code example, it refers to an instance of the VAI class.

The VAI.open() method opens a connection to the Vocera Server. The

method specifies the IP address(es) of the Vocera server computer(s), an

administrator's user name, and the corresponding password. For simplicity,

this example hard-codes the login credentials. When security is a concern, an

application should prompt for login credentials at the beginning of each VAI

session.

The example retrieves Vocera system properties into a KeyedPropertySet

object, which manages property data as a list of key-value pairs, where each key

is a string, and each value is either a string or another property set.

After printing the properties, the program closes the VAI connection to the

Vocera Server and releases associated resources. As a best practice, call the

close() method to close VAI connections explicitly.

The following listing shows a portion of the output generated by the sample

program (actual values will vary depending on specific Vocera system settings).

This listing is a string representation of a VAI KeyedPropertySet instance,

which encapsulates a collection of key-value pairs. A key is either a string (such

as Product Major Version) or another property set (indicated by the keyword

Set and delimited by square brackets).

Example 2. String representation of a KeyedPropertySet

Set
[
 Product Major Version = 4
 Product Minor Version = 0
 Product Revision = 0
 Time Last Update = 1143050438804
 Self Register = false
 ...
 Locale = US
 Mail Info = Set
 [
 Server Type = pop3
 Host =
 User Name =
 Encrypted Password =
 SMTP Host =
 SMTP User Name =
 Encrypted SMTP Password =
 SMTP Authentication = true

 VAI Example

20 ··· Vocera Administration Interface Guide

 Mail Check Interval = 30000
 Default Recipient =
 Domain Name =
]
 ...
]

Working With Entities ··· 21

 Working With Entities

The section describes how to work with VAI entities. A VAI entity provides

object-oriented access to data on the Vocera server. VAI implements classes you

can use to work with entities (such as users and groups), one at a time or in

sets. For example, in the following code fragment a UserSet object stores a list

of all users on the Vocera system. A User object represents the first user in that

list, and enables a call to the getUserID() method implemented by the User

class.

Example 3. UserSet and User example

UserSet uSet = User.getUsers(myVai);
if (uSet.size() > 0) {
 User u = uSet.elementAt(0);
 String sUserID = u.getUserID();
 System.out.println(sUserID);
}

User.getUsers() is a static method. It returns a set that lists the users in the

Vocera database. The myVai parameter represents an instance of the VAI class

initialized elsewhere. The example gets the set of Vocera users, retrieves the first

user in the set, gets the user ID, and then prints the user ID.

Entity Operations

This section describes operations you can perform on VAI entities.

Creating Entities

Every class that extends Entity provides a create() method that has the

following signature:

create(VAI vai, KeyedPropertySet ps)

 Querying Entities

22 ··· Vocera Administration Interface Guide

The create() method for each class returns an instance of that class. The vai

parameter represents a connection to the Vocera server (typically instantiated

by your application class), and the ps parameter stores the key-value pairs that

define properties for the class instance you are creating. Note that for each

entity type there are some required properties. For example, the property set

required to create a user is different from the property set required to create a

location, as shown in the following code listing.

Example 4. Property sets used to create users and locations

try {
 KeyedPropertySet kpsUser = new KeyedPropertySet(myVai);
 kpsUser.putString("User ID", "jruth");
 kpsUser.putString("First Name", "Jorge");
 kpsUser.putString("Last Name", "Ruth");
 kpsUser.putString("Password", "sultan");
 User u = User.create(myVai, kpsUser);

 KeyedPropertySet kpsLoc = new KeyedPropertySet(myVai);
 kpsLoc.putString("Name", "Cafeteria A");
 Location loc = Location.create(myVai, kpsLoc);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

This code assumes that myVai is a VAI object that has been instantiated and

used to open a connection to a Vocera Server. Each entity class is defined by a

specific set of required, optional, and default properties. The properties required

to create a location are different from those required to create a user.

Querying Entities

Each entity class implements methods for querying property values specific

to that class. Many entity classes also provide static methods that return data

about the collection of those class instances as they exist in a Vocera database.

For example, the following code gets information about the users in a group.

Example 5. Querying an entity

public void printGroupInfo() {
 try {
 Group gGroup = Group.getGroupWithName(myVai,
 "Doctors",
 "Cupertino");
 EntitySet esMembers = gGroup.getMembers(false);
 Entity e = null;
 String sCurrName = "";
 for (int i = 0; i < esMembers.size(); i++) {
 e = esMembers.entityAt(i);
 switch (e.getType()) {

Updating Entities

Working With Entities ··· 23

 case Entity.tyGroup:
 Group g = (Group) e;
 sCurrName = "[Group] " + g.getName();
 break;
 case Entity.tyUser:
 User u = (User) e;
 sCurrName = "[User] " + u.getFirstName() +
 " " + u.getLastName();
 break;
 default:
 sCurrName = "No name";
 break;
 }
 System.out.println(sCurrName);
 }
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

The getGroupWithName() method returns a group with a specified name and

site. The getMembers(false) method call specifies that both direct members

and indirect members (that is, users who belong to nested groups) are returned.

The example prints the names of the members, whether they are groups or

users.

Updating Entities

In contrast to APIs that provide accessor methods in pairs (such as getName()

and setName()), in VAI you update entities by setting values in property sets.

Classes that extend Entity inherit the update() method. The following code

updates the description of a location with the string "NICU Nurse Station".

Example 6. Updating the description of a location

try {
 KeyedPropertySet kps = new KeyedPropertySet(myVai);
 kps.putString("Description", "NICU Nurse Station");
 Location loc =
 Location.getLocationWithName(myVai,
 "NICU Nurses"
 "Cupertino");
 loc.update(myVai, kps);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

 Deleting Entities

24 ··· Vocera Administration Interface Guide

Use a KeyedPropertySet object to store the key-value pairs that you want to

update. When you update an entity, the set should contain only the properties

that you want to update. For example, when you need to change a user's last

name, create and submit a property set that contains only one key-value pair:

the key "Last Name" and the new value for the user's last name. If any property

values contained in the KeyedPropertySet are invalid, the update()

method fails and throws an exception.

Do not fetch a set of all the user's properties, enter a new last name, and then

submit the entire set. You might overwrite changes made by someone else,

either through a console or another VAI instance, that were made between your

fetch and your post.

For more information about using property sets to update entities, see

Working With Properties on page 51.

Deleting Entities

The Entity class provides a delete() method you can use to delete any

entity from the Vocera database. For example, the following code deletes a

user.

Example 7. Deleting a user

try {
 User u = User.getUserWithUserID(myVai, "visitor04");
 u.delete();
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

The Entity.delete() method deletes all data pertaining to an entity from

the Vocera system. However, the deletion does not occur immediately. To ensure

that no call activity is interrupted, the deletion takes effect when the system has

no calls or Genie sessions in progress or after the server is restarted.

In contrast, the following code removes a user from a group, but that user's

data remains in the Vocera database.

Example 8. Removing members from a group

try {
 User u = User.getUserWithUserID(myVai,
 "visitor04");
 Group g = Group.getGroupWithName(myVai,
 "Visitors",
 "Headquarters");
 g.removeMember(u);
} catch (VAIException ve) {

Using Internal Names

Working With Entities ··· 25

 System.out.println(ve.getMessage());
}

Using Internal Names

Vocera entities do not necessarily have unique names. For example, there may

exist several users or address book entries with the same first and last names,

even within the same site. Moreover, such "external" names may change as a

result of Administration Console edits or VAI calls. For this reason, each entity

has a unique identifier, called an internal name, that is created automatically

by the Vocera server when the entity is created. This internal name is invariant

over the lifetime of the entity, and may therefore be used externally, such as in

databases, to designate the entity.

Note: You should not expect users of your VAI client to know anything about

Vocera internal names. Therefore, you should avoid using internal names in

your client's UI.

The following code example shows how the Vocera system creates and uses

internal names for users who have the same first and last names.

Example 9. Getting internal names for entities

try {
 KeyedPropertySet kps1 = new KeyedPropertySet(myVai);
 kps1.putString("First Name", "Ted");
 kps1.putString("Last Name", "Doe");
 kps1.putString("User ID", "teddoe1");

 User u1 = User.create(myVai, kps1);
 System.out.println("Internal name for teddoe1: " +
 u1.getInternalName());
 KeyedPropertySet kps2 = new KeyedPropertySet(myVai);
 kps2.putString("First Name", "Ted");
 kps2.putString("Last Name", "Doe");
 kps2.putString("User ID", "teddoe2");

 User u2 = User.create(myVai, kps2);
 System.out.println("Internal name for teddoe2: " +
 u2.getInternalName());

 UserSet uSet = User.getUsers(myVai);
 int i = uSet.findFirstMatch("Doe,Ted");
 System.out.println("First match: " +
 uSet.entityAt(i).getInternalName());

 i = uSet.findLastMatch("Doe,Ted");
 System.out.println("Last match: " +
 uSet.entityAt(i).getInternalName());
 u1.delete();

 Working with Addresses

26 ··· Vocera Administration Interface Guide

 u2.delete();
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

The findFirstMatch() and findLastMatch() methods used in the

example are also useful for implementing a find-as-you-type feature in a user

interface.

The example code prints the following output.

Internal name for teddoe1: u-tdoe
Internal name for teddoe2: u-tdoe0
First match: u-tdoe0
Last match: u-tdoe

Working with Addresses

Use the Address class to work with Address Book entries. The Vocera address

book is a convenient way for badge users to contact places and people who are

not badge users. For example, if people in your organization frequently need to

contact local businesses, you can enter the business names and nicknames in

the address book. Then, getting a price quotation from Northwestern Hardware

can be as simple as using the badge to say "Call Northwestern."

Addresses are identified by names: one name for a place (for example,

"Northwestern"), two names for a person (first and last, for example, "Jane

Doe"). Therefore, in addition to the methods for standard entity operations, the

Address class provides methods for determining the type (isPlaceName()),

and for working with names (getPlaceName(), getFirstName(),

getLastName()). Also, the methods getAddressWithName() and

getAddressesWithName() are overloaded to return an Address or an

AddressSet object, respectively, given various combinations of place names,

first and last names, and site names.

The following code example returns a string describing the Address objects

defined for a specified site (or for all sites, if a site is not specified).

Example 10. Getting addresses for a site

public String getAddressNames(String sSite) {
 String sCurrSite = "";
 String sResult = "";
 String sCurrLastName = "No last name";
 String sCurrFirstName = "No first name";
 try {
 AddressSet asSet = Address.getAddresses(myVai, sSite);
 if (asSet.size() > 0) {
 for (int i = 0; i < asSet.size(); i++) {

Working with Buddies and Contacts

Working With Entities ··· 27

 Address addr = asSet.elementAt(i);
 sCurrSite =
 (sSite.equals("") || sSite == null)
 ? addr.getSiteName() : sSite;
 if (addr.isPlaceName()) {
 sCurrLastName = addr.getPlaceName();
 sResult = sResult + "\n" +
 "[Type] Place " + "\t" +
 "[Name] " + sCurrLastName + "\t" +
 "[Site] " + sCurrSite;
 } else {
 sCurrFirstName = addr.getFirstName();
 sCurrLastName = addr.getLastName();
 sResult = sResult + "\n" +
 "[Type] Person " +"\t" +
 "[Last Name] " + sCurrLastName +"\t" +
 "[First Name] " + sCurrFirstName +"\t" +
 "[Site] " + sCurrSite;
 }
 }
 } else {
 sResult = "There are no Addresses in the database.";
 }
 } catch (VAIException ve) {
 sResult = ve.getMessage();
 }
 return sResult;
}

The isPlaceName() method finds out whether the Address object

represents a person or a place. Internally, place names are stored in the Last

Name field, with First Name field empty. When the Address object represents

a person, you can call getLastName() and getFirstName(). When the

Address object represents a place, call getPlaceName() instead. You could

also query the Address's property set for the values of the First Name and Last

Name properties.

Working with Buddies and Contacts

A Vocera buddy is similar to an address book entry, in that it stores contact

information. However, an address book entry represents a person or place

outside of the Vocera system, while a buddy can be a badge user, a Vocera

group, a Vocera address book entry, or a person or place outside the Vocera

system. Also, address book entries are defined for entire sites (or the Global

site), while buddies are defined for individual badge users. Buddies enable the

use of nick names in prompts and voice commands (for example, "Call the Big

Kahuna").

 Working with Buddies and Contacts

28 ··· Vocera Administration Interface Guide

There are two types of buddies: inside buddies and outside buddies.

• An inside buddy represents another badge user, a group, or an address book

entry. Badge users can contact inside buddies the same way they contact

anyone with a badge. You can assign each buddy a special ring tone that

plays when the badge user receives a call from that buddy. Also, inside

buddies can be given VIP (very important person) status, enabling them to

contact a badge user even when that badge user is blocking calls or is in Do

Not Disturb mode.

• An outside buddy is someone who is not already represented in the Vocera

database as a badge user, group, or address book entry. A badge user can

contact an outside buddy by calling a telephone from a badge, or by sending

an email message from a badge to an email account.

Vocera users can create and manage buddy lists as described in the Vocera

User Console Guide. In VAI, you use the following classes to administer buddies

programmatically:

• The Contact class represents an outside buddy as a VAI entity. Use the

Contact class to create and delete outside buddies, specifying basic contact

information (such as name, phone number) in a KeyedPropertySet.

Unlike some other entity classes, the Contact class has some properties

that VAI cannot update. To get a complete list of all Contact properties

(read/write and read-only), call getPropertyKeys(). To get a list of

read/write properties (for example, to display in a UI for editing), call

getPropertyKeysForUpdate().

• The User class provides a means for updating a user's buddy list. Each User

object has a Buddies, an indexed set in which each element is itself a keyed

set that contains a Contact object or a User object along with properties

including nick name and VIP status.

The following code example creates an outside buddy (contact) and adds it to

an existing badge user's buddy list.

Example 11. Adding a contact

public static int addContact() {
 int iResultCode = -1;
 try {
 // Find the existing user.
 User u = User.getUserWithUserID(myVai, "rhall");

 // Properties for a new Contact.
 // A Contact represents an outside buddy.
 KeyedPropertySet kpsNewContact =
 new KeyedPropertySet(myVai);

Working with Buddies and Contacts

Working With Entities ··· 29

 kpsNewContact.putString("Last Name", "Davis");
 kpsNewContact.putString("First Name", "Mills");
 kpsNewContact.putString("Desk Phone", "408-555-1234");
 kpsNewContact.putUser("Owner", u);

 Contact cNewContact =
 Contact.create(myVai, kpsNewContact);

 // Properties (including the new Contact) for a new Buddy.
 KeyedPropertySet kpsNewBuddy =
 new KeyedPropertySet(myVai);
 kpsNewBuddy.putContact("Name", cNewContact);
 kpsNewBuddy.putString("Nick Name", "New outside buddy");

 // Add the new Buddy to the user's existing set.
 KeyedPropertySet kpsUser = u.getProperties();
 IndexedPropertySet ipsBuddies =
 kpsUser.getIndexedSet("Buddies");
 ipsBuddies.add(kpsNewBuddy);

 // Update the user with new property set.
 KeyedPropertySet kpsUpdate =
 new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Buddies", ipsBuddies);

 u.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }

The following code example adds an existing badge user to another badge

user's buddy list.

Example 12. Adding an inside buddy

public static int addInsideBuddy() {
 int iResultCode = -1;
 try {
 // Search for inside buddy.
 User uBuddy = User.getUserWithUserID(myVai, "mdavis");

 // Properties for a new Inside Buddy.
 KeyedPropertySet kpsNewBuddy =
 new KeyedPropertySet(myVai);
 kpsNewBuddy.putUser("Name", uBuddy);
 kpsNewBuddy.putString("Nick Name", "New inside buddy");

 // Search for owner.

 Working with Devices

30 ··· Vocera Administration Interface Guide

 User uOwner = User.getUserWithUserID(myVai, "rhall");

 // Add the new Buddy to the user's existing set.
 KeyedPropertySet kpsUser = uOwner.getProperties();
 IndexedPropertySet ipsBuddies =
 kpsUser.getIndexedSet("Buddies");
 ipsBuddies.add(kpsNewBuddy);

 // Update the user with new property set.
 KeyedPropertySet kpsUpdate =
 new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Buddies", ipsBuddies);

 uOwner.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Working with Devices

Use the Device class to work with Vocera devices, such as badges. You can

manage and track the devices that connect to the Vocera system.

Creating a Device

To create a device, use the Devices.create() method. The only required

property for devices is the MAC Address property, a 12-character string.

Note: Vocera automatically adds new devices to the system when they connect

to the server, so you rarely will need to create a device using VAI. Instead, use

VAI to update device information.

Example 13. Creating a device

public static void createNewDevice(String sMACAddr){
 try {
 KeyedPropertySet kpsDevice = new KeyedPropertySet(myVai);
 kpsDevice.putString("MAC Address", sMACAddr);
 Device d = Device.create(myVai, kpsDevice);
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

For more information about creating entities, see Creating

Entities on page 21.

Updating a Device

Working With Entities ··· 31

Updating a Device

As part of your device management practices, the System Device Manager

should input information for each Vocera badge. This information will allow you

to manage and track the badges that connect to the Vocera system.

Example 14. Updating a device

//import java.text.*;

public static void updateDevice(Device d){
 try {
 DateFormat df = new SimpleDateFormat("MM/dd/yyyy");
 long lTracking = df.parse("11/30/2013").getTime();
 Site siteSC = Site.getSiteWithName(myVai, "Santa Cruz");
 Group gEDN = Group.getGroupWithName(myVai, "E D Nurse",
 "Global");

 KeyedPropertySet kpsDevice = new KeyedPropertySet(myVai);
 kpsDevice.putString("Serial No", "A2AM070505D4");
 kpsDevice.putString("Status", "Active");
 kpsDevice.putGroup("Owning Group",gEDN);
 kpsDevice.putLong("Tracking Time", lTracking);
 kpsDevice.putSite("Site", siteSC);
 kpsDevice.putBoolean("Shared", false);
 d.update(myVai, kpsDevice);
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

The serial number for a device must be consistent with the device's MAC

address. Otherwise, the update() method will fail and throw an exception.

For more information about updating entities, see Updating

Entities on page 23.

Getting Devices

The Device class provides several methods for getting devices. There are

different methods for retrieving a set of devices and for retrieving a single

device.

You can use the following methods to return a set of devices. Each of these

methods returns a DeviceSet object, which provides methods to manipulate

the set.

 Getting Devices

32 ··· Vocera Administration Interface Guide

Table 4. Methods for retrieving a set of devices

Method Description

getDevices(VAI vai) Returns the set of all devices.

getDevices(VAI vai,
java.lang.String sSiteName)

Returns the set of devices for a
given site.

getDevicesWithLabel(VAI vai,
java.lang.String sLabel)

Returns the set of devices with a
specified label.

getDevicesWithOwner(VAI vai,
Group gOwner)

Returns the set of devices with a
specified owning group.

getDevicesWithOwner(VAI vai,
Group gOwner, java.lang.String
sSiteName)

Returns the set of devices with
a specified owning group at a
particular site.

Table 5. Methods for retrieving an individual device

Method Description

getDeviceWithInternalName(VAI
vai, java.lang.String
sInternalName)

Returns the device with the specified
internal name.

getDeviceWithMACAddr(VAI vai,
java.lang.String sMACAddr)

Returns the device with the specified
MAC address.

getDeviceWithSerialNo(VAI vai,
java.lang.String sSerialNo)

Returns the device with the specified
serial number.

Example 15. Getting devices

public static void getSCDevices(){
 try {
 Device d;
 //Get the devices at the Santa Cruz site
 DeviceSet dsSC = Device.getDevices(myVai, "Santa Cruz");
 for (int i = 0; i < dsSC.size(); i++) {
 d = dsSC.elementAt(i);

 //Print the MAC address of each device at Santa Cruz
 System.out.println("MAC Address: " +
 d.getName());

 //Print the serial number of each device
 System.out.println("Serial No: " +
 d.getSerialNo());
 }

Getting the Color or Type of a Device

Working With Entities ··· 33

 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Getting the Color or Type of a Device

Vocera devices are either white or black. All B1000A badges are

black. B2000 badges can be black or white. You can use the

Device.getColorFromSerialNo() method to determine the color of a

device based on its serial number.

A Vocera device can be one of three types: B2000, B1000A, or an unknown

type. The Device class provides integer constants to represent these types.

You can use these constants as the parameter value for getDeviceType(int

iType) to return a localized String representation of the device type.

The following example shows how to get the color and type of a device.

Example 16. Getting the color and type of a device

public static void getColorAndType(Device d){
 try {
 //Get the color of the device
 String sColor = d.getColorFromSerialNo(d.getSerialNo());
 //Print the color
 System.out.println(sColor);

 //Get the device type of the device
 String sType = Device.getDeviceType(d.getDeviceType());
 //Print the device type
 System.out.println(sType);
 }
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Modifying Device Status Choices

Vocera provides a list of default status values for devices, such as

"Unregistered," "Inventory," and "Active." However, you can define your

own status choices based on the device management processes you have

implemented.

The following example shows how to add, delete, and rename a device status.

Example 17. Modifying device status choices

public static void modifyStatuses(){
 try {
 //Add a new status called "Assigned"

 Uploading Badge Logs

34 ··· Vocera Administration Interface Guide

 Device.addStatusChoice(myVai, "Assigned",
 "Badge has been assigned to a group.");

 //Remove the status "Active" and replace it with "Assigned"
 Device.removeStatusChoice(myVai, "Active", "Assigned");

 //Change the name of status "Received for Repair"
 //to "In Repair"
 Device.renameStatusChoice(myVai, "Received for Repair",
 "In Repair", "System Device Manager has received
 the Vocera device for diagnosis and repair.");
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Uploading Badge Logs

If you know the MAC address of a badge that is connected to the Vocera

Server, you can use the Device.uploadBadgeLogs() method to upload

the logs from the badge to the Vocera Server for troubleshooting purposes.

To get the MAC address for the badge currently associated with a user,

you can use the User.getBadgeStatus() method. If you already know

the MAC address of a badge, you can get the associated user by using the

User.getUserWithMACAddr() method.

Note: The uploadBadgeLogs() method is not supported on B1000A badges

and Vocera smartphones.

The badge assembles logs files into a single .tar.gz file and uploads the file to

the \vocera\logs\BadgeLogCollector\uploads directory on the Vocera Server.

The format of the filename is DATETIME-USERNAME-BADGEMAC-udd.tar.gz.

The following example shows how to upload badge logs.

Example 18. Uploading badge logs

public static void uploadBadgeLogs(VAI myVai, String userID){
 int iResultCode = -1;
 String macAddr = "";
 try
 {
 BadgeStatus[] bsa = User.getBadgeStatus(vai);
 BadgeStatus bsObj = null;
 for (int i = 0; i < bsa.length; i++) {
 bsObj = bsa[i];
 User uTemp = bsObj.u;
 if (uTemp.getUserID().equals(userID)) {
 macAddr = bsObj.sMACAddr;
 break;
 }

Working with Groups

Working With Entities ··· 35

 }
 if (!macAddr.equals("")) {
 Device.uploadBadgeLogs(myVai, macAddr);
 if (iResultCode == -1) {
 System.out.println("Badge logs were uploaded.");
 }
 } else {
 System.out.println("Error: " + userID +
 " is not logged into a B2000 or B3000 badge.");
 }
 }
 catch (VAIException e)
 {
 iResultCode = e.getResultCode();
 System.out.println(e.getMessage());
 }
}

Working with Groups

Use the Group class to work with Vocera groups. Vocera groups organize users

into roles such as Floor Manager, Cashier, Nurse, Cardiologist, Executive, and so

forth. Groups provide a way to leave messages for many users at once ("Send a

message to Nurses Assistants"), or to call someone who fits a specific role ("Call

a sales person"), belongs to a certain department ("Call Accounts Receivable"),

or has some other skill or authority that the caller requires ("Call a manager").

See the Vocera Administration Guide for complete information about groups.

Getting Subgroups

A group can have multiple levels of subgroups contained within it. To work

with subgroups, the Group class provides the getSubgroups() method.

This method takes one parameter, a boolean value that specifies whether to

return only immediate subgroups or all subgroups, including nested subgroups.

For example, the following figure shows the group structure for the I C U

department group, which has six subgroups. Given a parameter value of true,

the getSubgroups() method would return a set that did not include the

I C U Float Nurse subgroup because it is not a direct member of I C U. Given a

parameter value of false, the getSubgroups() method would return a set

containing all six subgroups, including I C U Float Nurse.

 Managing Group Membership

36 ··· Vocera Administration Interface Guide

Figure 1. Subgroups

The following code example shows how to get all subgroups for the I C U

department group:

Example 19. Getting subgroups

void getICUSubgroups(VAI myVai) {
 try {
 Group gICU = Group.getGroupWithName(myVai, "I C U", "Global");
 GroupSet gsICUSubs = gICU.getSubgroups(true);
 for (int i=0; i < gsICUSubs.size(); i++) {
 System.out.println(gsBICUSubs.elementAt(i).getName());
 }
 }catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Managing Group Membership

Group membership can change over time, and in some environments it

can change frequently. A user can be a member of multiple groups at the

same time. An administrator can add or remove group members either with

voice commands or through the Administration Console. Users can remove

themselves from groups, and with the proper permission, they can add

themselves or other users to groups.

The Group class provides the getMembers() method. This method takes one

parameter, a boolean value that specifies whether to return only direct group

members or direct members and members of nested groups. For example, the

following figure shows a group structure where the Employees group contains

six members: four direct members and two members in a nested group named

Managers. Given a parameter value of true, the getMembers() method

would return a set containing the four direct members. Given a parameter value

of false, the getMembers() method would return a set containing all six

members.

Managing Group Membership

Working With Entities ··· 37

Figure 2. Nested groups

The following code example shows how VAI can manage group membership.

Example 20. Managing groups

void manageGroups(VAI myVai) {

 try {

 User u;
 UserSet us = new UserSet(myVai);

 // Get the Managers group in the Global site
 Group gMgr = Group.getGroupWithName(myVai,"Managers","Global");

 // Get a User with the ID "jfernandez"
 u = User.getUserWithUserID(myVai, "jfernandez");

 // Add jfernandez to the user set
 us.add(u);

 // Remove jfernandez from the Managers group
 gMgr.removeMember(u);

 // Get another User with the ID "hwang"
 u = User.getUserWithUserID(myVai, "hwang");

 // Add hwang to the user set
 us.add(u);

 // Add hwang to the Managers group
 gMgr.addMember(u);

 // Create a new keyed property set for a group
 KeyedPropertySet kpsG = new KeyedPropertySet(myVai);
 kpsG.putString("Name","Technicians");

 Managing Group Permissions

38 ··· Vocera Administration Interface Guide

 kpsG.putString("Spoken Member Name", "a technician");

 // Create a new group called Technicians
 Group gTech = Group.create(myVai, kpsG);

 // Add members from the user set to the group
 for (int i = 0; i < us.size(); i++) {
 gTech.addMember(us.elementAt(i));
 }

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

When you remove a member from a group, you do not delete the user from the

database.

Note: The Group.updateMembers(EntitySet esMembers) method

simplifies updates to group membership. This sets the members of a group

in one operation, which is more efficient than making repeated calls to

addMember() and removeMember(). All existing members of the group

are removed, and members in esMembers are added in order. For more

information about the updateMembers() method, see the Javadoc for the

Group class.

Managing Group Permissions

When you create or modify a group, you specify values for properties that

control the way the group behaves and the way users interact with it. Among

these properties are permissions, such as Call Toll Numbers, Initiate Urgent

Broadcasts, and Erase Voiceprint of Another User.

A Group object's properties include two sets: Permissions and AntiPermissions.

The Permissions set specifies the permissions that are granted to members

of that group, while the AntiPermissions set specifies permissions that are

revoked for those members even if they belong to another group that confers

the permissions. Both of these sets have the same keys, and all the values

are of type boolean. To explicitly grant a permission, set the corresponding

property in the Permissions set to true. To explicitly revoke a permission, set

the corresponding property in the AntiPermissions set to true, as in, "Yes,

it's true. I really want to revoke this permission." A permission cannot be

both granted and revoked for the same group simultaneously. Therefore, a

permission that has been revoked automatically overrides the granting of that

same permission.

Managing Group Permissions

Working With Entities ··· 39

The complete set of permissions available to any single user is the total list

of permissions granted to all the groups of which he or she is a member.

Therefore, setting a property value to false in the Permissions set does not

necessarily deny that permission to a user, nor does setting a property value

to false necessarily grant that permission. The user may belong to other

groups for which the property has been explicitly granted or revoked. For more

information about working with permissions, see Vocera Administration Guide.

The following code example shows how VAI can explicitly grant and revoke

permissions for a group.

Example 21. Granting and revoking permissions for a group

public static int demoPermissions() {
 int iResultCode = -1;
 try {
 Group g =
 Group.getGroupWithName(myVai, "Doctors", "Global");

System.out.println("Before");
KeyedPropertySet kpsG = g.getProperties();
KeyedPropertySet kpsP = kpsG.getKeyedSet("Permissions");
KeyedPropertySet kpsAP = kpsG.getKeyedSet("AntiPermissions");
System.out.println(kpsP.toString());
System.out.println(kpsAP.toString());

 KeyedPropertySet kpsPerms =
 new KeyedPropertySet(myVai);
 KeyedPropertySet kpsAntiPerms =
 new KeyedPropertySet(myVai);

 //Explicitly grant these permissions
 kpsPerms.putBoolean("Call Toll-Free Numbers", true);
 kpsPerms.putBoolean("Call Toll Numbers", false);

 //Explicitly revoke these permissions
 kpsAntiPerms.putBoolean("Erase your Voiceprint", true);
 kpsAntiPerms.putBoolean("Record your Voiceprint", false);

 KeyedPropertySet kpsGroup =
 new KeyedPropertySet(myVai);
 kpsGroup.putSet("Permissions", kpsPerms);
 kpsGroup.putSet("AntiPermissions", kpsAntiPerms);

 g.update(myVai, kpsGroup);
 iResultCode = 0;

System.out.println("After");
kpsG = g.getProperties();
kpsP = kpsG.getKeyedSet("Permissions");
kpsAP = kpsG.getKeyedSet("AntiPermissions");
System.out.println(kpsP.toString());

 Working with Locations

40 ··· Vocera Administration Interface Guide

System.out.println(kpsAP.toString());

 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 System.out.println(ve.getMessage());
 }
 return iResultCode;
}

Working with Locations

Use the Location class to work with Vocera locations. Locations are names of

places to which you assign one or more access points. When a badge connects

to an access point, the Vocera server is able to report the corresponding

location. The location names also appear in the Badge Status Monitor, replacing

the MAC address of the access point.

Locations are identified by names. Therefore, in addition to the methods for

standard entity operations, the Location class provides methods that return a

Location or a LocationSet object, given various combinations of location

names, site names, and internal names.

The following code example returns information about the Location objects

defined for a specified site (or for all sites, if a site is not specified).

Example 22. Getting location information

public String getLocationInfo(String sSite) {
 String sCurrSite = "";
 String sResult = "";
 String sCurrName = "No name";
 String sCurrDesc = "";
 KeyedPropertySet kpsLoc = new KeyedPropertySet(myVai);
 try {
 LocationSet lsSet = Location.getLocations(myVai, sSite);
 if (lsSet.size() > 0) {
 for (int i = 0; i < lsSet.size(); i++) {
 Location loc = lsSet.elementAt(i);
 sCurrName = loc.getName();
 sCurrSite =
 (sSite.equals("") || sSite == null)
 ? loc.getSiteName() : sSite;
 kpsLoc = loc.getProperties();
 sCurrDesc = kpsLoc.getString("Description");
 sResult = sResult + "\n" +
 "[Name] " + sCurrName +"\t" +
 "[Site] " + sCurrSite +"\t" +
 "[Description] " + sCurrDesc;
 }
 } else {
 sResult = "There are no Locations in the database.";

Working with Locations

Working With Entities ··· 41

 }
 }catch (VAIException ve) {
 sResult = ve.getMessage();
 }
 return sResult;
}

The following code example shows how to create a location and set its

properties, including properties for Access Points and Neighbors.

Example 23. Creating a location

private void createLocation() {

 try {

 Location l;

 // Create a new keyed property set for a location
 KeyedPropertySet kpsL = new KeyedPropertySet(myVai);
 kpsL.putString("Name","Lab");
 kpsL.putString("Description", "Laboratory");
 kpsL.putSite("Site", "s-global");
 kpsL.putString("Spoken Name", "laboratory");

 // Create an indexed property set for access points
 IndexedPropertySet ipsAP = new IndexedPropertySet(myVai);
 ipsAP.add("00008A886356");
 ipsAP.add("00004A556454");
 kpsL.putSet("Access Points", ipsAP);

 // Create an indexed property set for neighbors
 IndexedPropertySet ipsN = new IndexedPropertySet(myVai);
 l = Location.getLocationWithName(myVai, "Oakmont", "Global");
 ipsN.add(l);
 l = Location.getLocationWithName(myVai, "Spyglass", "Global");
 ipsN.add(l);
 kpsL.putSet("Neighbors", ipsN);

 // Create the location
 Location lLab = Location.create(myVai, kpsL);

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

 Working with Sites

42 ··· Vocera Administration Interface Guide

Working with Sites

Use the Site class to work with Vocera sites. In Vocera, a site is a distinct

physical location that shares a centralized Vocera server with one or more other

physical locations. Site profiles associate users and groups with specific physical

locations.

Sites are identified by names. Therefore, in addition to the methods for

standard entity operations, the Site class provides methods that return a Site

or a SiteSet object, given various combinations of site names and internal

names.

Unlike some other entity classes, the Site class has some properties that VAI

cannot update. To get a complete list of all Site properties (read/write and

read-only), call getPropertyKeys(). To get a list of read/write properties (for

example, to display in a UI for editing), call getPropertyKeysForUpdate().

The Site class also provides methods for moving entities between sites. The

moveEntitiesToSite() method is overloaded, enabling you to move all

entities from one site to another, or to specify a set of entities to move. The

following code example moves a group and all of its members to another site.

Example 24. Moving a group to another site

public int transferGroup(String sGroupName,
 String sFromSite,
 String sToSite)
{
 int iResultCode = -1;
 try {
 Group g =
 Group.getGroupWithName(myVai, sGroupName, sFromSite);
 EntitySet es = g.getMembers(false);
 es.add(g);
 Site siFrom = Site.getSiteWithName(myVai, sFromSite);
 siFrom.moveEntitiesToSite(es, sToSite);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Working with Sites

Working With Entities ··· 43

Many Site object properties configure telephony properties for a site, and

so enable programmatic access to the features of the Telephony screen in the

Administration Console. As in the Administration Console, many telephony

properties cannot be modified through VAI unless telephony is enabled. For

example, suppose that you want the Telephony server to omit the area code

from the dial string when placing a local call. Using the Administration Console,

you would perform the following steps.

1. Display the Basic Info page of the Telephony screen.

2. Verify that Enable Telephony Integration is selected (checked).

3. Display the Access Codes page of the Telephony screen.

4. Verify that Omit Area Code when Dialing Locally is selected (checked).

5. Save changes, if necessary.

The following code example shows the corresponding steps in VAI.

Example 25. Omitting the area code from the dial string

public static int omitAreaCode(String sSiteName) {
 int iResultCode = -1;
 try {
 Site si = Site.getSiteWithName(myVai, sSiteName);
 KeyedPropertySet kpsSite = si.getProperties();
 KeyedPropertySet kpsTelInfo =
 kpsSite.getKeyedSet("Telephony Info");
 boolean bTelEnabled =
 kpsTelInfo.getBoolean("Telephony Enabled");
 KeyedPropertySet kpsNewTelInfo =
 new KeyedPropertySet(myVai);

 if (bTelEnabled == false) {
 kpsNewTelInfo.putBoolean("Telephony Enabled", true);
 KeyedPropertySet kpsUpdate = new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Telephony Info", kpsNewTelInfo);
 si.update(myVai, kpsUpdate);
 }

 kpsNewTelInfo.putBoolean("Seven Digit Dialing", true);
 KeyedPropertySet kpsUpdate = new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Telephony Info", kpsNewTelInfo);
 si.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

 Working with Users

44 ··· Vocera Administration Interface Guide

Working with Users

Adding new users to the system and updating information for existing users

are two primary tasks of a Vocera system administrator. When you add a user

(or when a user self-registers), the Vocera system creates a profile for that user

in the Vocera server database. Use the User class to work with Vocera user

profiles.

After a user has had some time to work with the badge, you may need to edit

the user’s profile to add features that may be useful or remove features that the

user does not want. In addition to a user’s name and contact information, the

profile stores user preferences, such as which Genie persona will prompt the

user, whether warning tones are played when the badge has a low battery, or

when the user has a new voice or text message.

Unlike some other entity classes, the User class has some properties that

VAI cannot update. To get a list of User properties that you can read, call

getPropertyKeys(). To get a list of properties that you can modify (for

example, to display in a UI for editing), call getPropertyKeysForUpdate().

Note: For security reasons, password properties cannot be read but they can

be updated.

Identifying Users

Users are identified by names. Therefore, in addition to the methods for

standard entity operations, the User class provides methods for working

with names (getFirstName(), getLastName()). Also, the methods

getUserWithName() and getUsersWithName() are overloaded to return

a User or a UserSet object, respectively, given various combinations of first

names, last names, and site names.

Because it's not uncommon for two or more users to have the same first and

last names, the User class provides the following methods for distinguishing

between users:

Table 6. Methods for distinguishing between users

Method Description

getUserWithMACAddr(VAI vai,
java.lang.String sMACAddr)

Returns user with a given MAC
address, or null if no such user
exists.

getUserWithUserID(VAI vai,
java.lang.String sUserID)

Returns user with a given User ID, or
null if no such user exists.

Users and Group Membership

Working With Entities ··· 45

Method Description

getUserWithInternalName(VAI
vai, java.lang.String
sInternalName)

Returns user with a given internal
name.

Users and Group Membership

To find out which groups a user belongs to, call the getContainingGroups()

method. This method takes a boolean argument that specifies whether to

return only those groups of which the user is an immediate (direct) member, or

to return all the groups of which the user is a member.

For example, suppose that the user Jane Doe is a member of the Charge Nurses

group, and the Charge Nurses group is a member (subgroup) of the Nurses

group. A call to getContainingGroups(true) would return only the Charge

Nurses group, while a call to getContainingGroups(false) would return

both the Charge Nurses group and the Nurses group.

The following code example prints the names of containing groups for a user

specified by user ID.

Example 26. Getting groups for a user

public int getGroupsForUser(String sUserID,
 boolean bImmediate) {
 int iResultCode = -1;
 try {
 User u = User.getUserWithUserID(myVai, sUserID);
 GroupSet gs = u.getContainingGroups(bImmediate);
 Group gTemp = null;
 for (int i = 0; i < gs.size(); i++) {
 gTemp = gs.elementAt(i);
 System.out.println(gTemp.getName());
 }
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

When the value of the bImmediate parameter of getContainingGroups()

is true, the method retruns only those groups in which the user is a direct

member. Otherwise, it returns all the groups in which the user is a member.

 Badge Users and Badge Status

46 ··· Vocera Administration Interface Guide

Badge Users and Badge Status

The User class also provides getBadgeStatus(), a static method that returns

status information about every user who is currently logged in and online. This

method returns an array of BadgeStatus objects, where each BadgeStatus

object has the public fields defined in the following table.

Note: The getBadgeStatus() method returns an array that contains a

BadgeStatus object for every user who is currently logged in and online.

Therefore, when a large number of users are online, the resulting array is large,

too.

Table 7. BadgeStatus fields

Name Type Description

u User Represents a badge user.

sIPAddr String Dotted form of the user's IP address.

sLocation String Name of the user's current location.

bDND boolean True if the user is in Do Not Disturb mode.

bHold boolean True if the user is has a call on hold.

sCallState String Current call state. One of: Inactive, Call,
Genie, Conference.

siLocalSite Site Represents the user's current site.

sMACAddr String MAC address of the device.

The following code example uses the getBadgeStatus() method and a

BadgeStatus object to get the name of the location with which a specified

badge user is associated, if that user is online.

Example 27. Getting the current location for a badge

public String getUserLocation(String sUserID) {
 String sLoc = "";
 try {
 BadgeStatus[] bsa = User.getBadgeStatus(myVai);
 BadgeStatus bsObj = null;
 for (int i = 0; i < bsa.length; i++) {
 bsObj = bsa[i];
 User uTemp = bsObj.u;
 if (uTemp.getUserID().equalsIgnoreCase(sUserID)) {
 sLoc = bsObj.sLocation;
 break;

Importing User Data

Working With Entities ··· 47

 } else {
 sLoc = sUserID + " is not online.";
 }
 }
 } catch (VAIException ve) {
 sLoc = ve.getMessage();
 }
 return sLoc;
}

Importing User Data

This section describes one way to import user data from an external database

into the Vocera database. Several aspects of this sample have been simplified

for clarity. For example, table structures and relationships are likely to be more

complex in a production environment. Similarly, the Java code omits details such

as error checking.

The following code example queries an external MySQL database using JDBC,

then uses the results to create users in the Vocera database.

Example 28. Importing users from an external database

import java.sql.*;
import vai.*;

public class DbDemo {
 public static VAI myVai = new VAI();

 private class MyVaiListener implements VAIListener {
 public void handleServerStateChange(int iState) {
 System.out.println("Handling Vocera server state change: "
 + VAI.getServerStateString(iState));
 }

 public void handleReportStatus(String sTitle,
 int iStatus,
 String sStatus,
 int iPercentDone,
 String sError)
 {
 System.out.println("Reporting a server status change.");
 }
 } // MyVaiListener

 public MyVaiListener myL;

 public DbDemo() {
 myL = new MyVaiListener();
 }

 // Database connnection parameters.

 Importing User Data

48 ··· Vocera Administration Interface Guide

 // Replace them with values for your database.
 static String sHost = "host";
 static String sDbName = "database";
 static String sUsername = "user";
 static String sPassword = "password";

 // Build a JDBC connection string.
 // Values shown are for MySQL.
 static String sThinConn = "jdbc:mysql://" +
 sHost + "/" + sDbName;

 // Edit this value for a database other than MySQL.
 static String sDriverName = "com.mysql.jdbc.Driver";

 public static void main(String[] args) {
 DbDemo demo = new DbDemo();

 try {
 // Replace vs_name with your Vocera server host name.
 myVai.open("vs_name",
 "Administrator",
 "admin",
 demo.myL);

 // Connect to the database.
 Class.forName(sDriverName).newInstance();
 Connection conn =
 DriverManager.getConnection(sThinConn,
 sUsername,
 sPassword);
 // Define and execute a query.
 Statement stmt = conn.createStatement();
 String query =
 "select e.UserID, e.FirstName, e.LastName, " +
 "d.CostCenter " +
 "from EMP e, DEPT d " +
 "where e.DeptID = d.ID";

 ResultSet rs = stmt.executeQuery(query);

 // Use query results to create Vocera users.
 KeyedPropertySet kpsUser = null;
 User u = null;
 while (rs.next()) {
 kpsUser = new KeyedPropertySet(myVai);
 kpsUser.putString("User ID",
 rs.getString("UserID"));
 kpsUser.putString("First Name",
 rs.getString("FirstName"));
 kpsUser.putString("Last Name",
 rs.getString("LastName"));
 kpsUser.putString("Cost Center",

Importing User Data

Working With Entities ··· 49

 rs.getString("CostCenter"));
 // Assign a default password.
 kpsUser.putString("Password", "vocera");

 u = User.create(myVai, kpsUser);
 System.out.println("Created user: " +
 rs.getString("UserID"));
 }
 // Close database connection.
 conn.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " + ve.getMessage());
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 // Close VAI connection.
 myVai.close();
 }
}

The sample external database contains tables named DEPT and EMP created by

the following SQL code.

Example 29. SQL code for an external database

DROP TABLE IF EXISTS `DEPT`;
CREATE TABLE `DEPT` (
 `ID` int NOT NULL,
 `Name` varchar(50) NOT NULL,
 `CostCenter` int default NULL,
 UNIQUE KEY `ID` (`ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `EMP`;
CREATE TABLE `EMP` (
 `UserID` varchar(70) NOT NULL,
 `LastName` varchar(50) NOT NULL,
 `FirstName` varchar(50) NOT NULL,
 `DeptID` int default NULL,
 FOREIGN KEY (`DeptID`) REFERENCES DEPT(`ID`)
 ON DELETE CASCADE,
 UNIQUE KEY `UserID` (`UserID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

The DEPT table was populated by running the following SQL code.

Example 30. SQL code that populates the DEPT table

insert into `DEPT` values(1, 'Engineering', 100)
insert into `DEPT` values(2, 'Marketing', 200)
insert into `DEPT` values(3, 'QA', 101)
insert into `DEPT` values(4, 'Sales', 300)

 Sending a Text Message

50 ··· Vocera Administration Interface Guide

The EMP table was populated by running the following SQL code.

Example 31. SQL code that populates the EMP table

insert into `EMP` values('jdoe', 'Doe', 'Jane', 1)
insert into `EMP` values('mdavis', 'Davis', 'Mills', 2)
insert into `EMP` values('cparker', 'Parker', 'Charlotte', 3)
insert into `EMP` values('tmonk', 'Monk', 'Thelma', 4)
insert into `EMP` values('dgillespie', 'Gillespie', 'Desi', 1)

Sending a Text Message

The User class has a sendTextMessage() method that sends a text message

from one user to a set of users and groups. The following example is a method

that uses sendTextMessage() to send a reminder to the badge of a user.

Example 32. Sending a text message

public void sendReminder(String sUserID, String sMessage) {
 try {
 String sSubject = "Reminder";
 User u = User.getUserWithUserID(myVai, sUserID);
 UserSet usMessageTo = new UserSet(myVai);
 usMessageTo.add(u);
 u.sendTextMessage(usMessageTo, sSubject, sMessage);
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
}

For more information about the sendTextMessage() method, see the

Javadoc for the User class.

Working With Properties ··· 51

 Working With Properties

VAI uses collections of key-value pairs called property sets to define and

manipulate the characteristics of Vocera entities and the Vocera system. The

base class is PropertySet, an abstract class that extends java.lang.Object

and defines methods inherited by the following classes:

• The KeyedPropertySet class implements methods you can use to

manipulate sets of key-value pairs where each key is a string. See Using

Keyed Property Sets on page 51.

• The IndexedPropertySet class implements methods you can use

to manipulate indexed sets of values. See Using Indexed Property

Sets on page 53.

Using Keyed Property Sets

A KeyedPropertySet object represents the attributes of a Vocera entity or

the Vocera system as a set of key-value pairs where each key is a string. For

example, the key-value pair for a user's desk extension could be:

"Desk Phone" "1234".

Each Entity subclass provides a static method (for example,

User.getPropertyKeys) that returns a String[] array containing the property

key names for that class. Also, because some entity property values cannot

be changed, each Entity subclass provides a static method (for example,

User.getPropertyKeysForUpdate) that returns a list of the keys for

properties that can be updated. The following code prints the property key

names for the User class.

Example 33. Getting property keys

String[] saKeys = User.getPropertyKeys();
for (int i = 0; i < saKeys.length; i++)
 System.out.println(saKeys[i]);

 Using Keyed Property Sets

52 ··· Vocera Administration Interface Guide

The following listing shows a portion of the output returned by

User.getPropertyKeys().

User ID
Password
Last Name
First Name
Alt Spoken Names
Alt Spoken Names.*
Ident Phrase
Email Address
...
Buddies
Buddies.*
Buddies.*.Name
Buddies.*.Nick Name
Buddies.*.VIP
Buddies.*.RingTone
...

Key names are strings. A key name followed by an asterisk indicates that the

corresponding property value is itself an indexed property set. For example, the

value of the Alt Spoken Names property is an indexed property set of strings,

where each string represents an alternate spoken name.

In addition, the Entity class provides a getProperties method that returns

a complete property set for any given subclass. For example, the following code

prints the properties of a specified location.

Example 34. Getting location properties

LocationSet ls = Location.getLocations(myVai);
if (ls.size() > 0) {
 Location loc = ls.elementAt(0);
 KeyedPropertySet kps = loc.getProperties();
 System.out.println(kps.toString());
}

Here is an example of the output generated by the previous code example.

KVSet refers to a keyed property set, whereas XVSet refers to an indexed one.

KVSet
[
 Name = Cafeteria
 Spoken Name = the caff
 Description = The main cafeteria
 Site = s-global
 Access Points = XVSet
 [
 1 = 00064b4e9146

Using Indexed Property Sets

Working With Properties ··· 53

]
 Neighbors = XVSet
 [
 1 = l-h_q_lobby
]
]

When you update an entity, use a KeyedPropertySet to store the key-value

pairs that you want to update. The set should contain only the properties that

you want to update. For example, suppose you need to change a user's last

name. You would create and submit a property set that contains only one key-

value pair: the key "Last Name" and the new value for the user's last name.

Do not fetch a set of all the user's properties, enter a new last name, and then

submit the entire set. You might overwrite changes made by someone else,

either through a console or another VAI instance, made in between your fetch

and your posting.

Example 35. Using a KeyedPropertySet to update an entity

try {
 KeyedPropertySet kps = new KeyedPropertySet(myVai);
 kps.putString("Description", "NICU Nurse Station");
 Location loc =
 Location.getLocationWithInternalName(myVai,
 "l-station3");
 loc.update(myVai, kps);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Using Indexed Property Sets

The IndexedPropertySet class extends the PropertySet class. An indexed

property set is like an array of property values, each of which can be a keyed or

indexed property set, or a string. Indexed property sets are homogeneous in the

sense that each indexed value is of the same type.

You can specify an index when storing or retrieving an IndexedPropertySet

element. Index values are integers, and the index of the first element in

an IndexedPropertySet is 0. You can also put a property value into an

IndexedPropertySet without specifying an index, in which case the property

value is appended to the set.

The following code example shows some techniques for creating and querying

an IndexedPropertySet.

Example 36. Creating and querying an IndexedPropertySet

public static int createAltSpokenNames() {

 Using Indexed Property Sets

54 ··· Vocera Administration Interface Guide

 int iResultCode = -1;
 try {
 // Search for existing user.
 String sUid = "Doe,Janet";
 UserSet usGlobal = User.getUsers(myVai);
 int iFind = usGlobal.findFirstMatch(sUid);
 User u = usGlobal.elementAt(iFind);

 // Add new alternate spoken names
 IndexedPropertySet ips = new IndexedPropertySet(myVai);
 ips.add("Jane");
 ips.add("J D");
 KeyedPropertySet kpsASN = new KeyedPropertySet(myVai);
 kpsASN.putSet("Alt Spoken Names", ips);
 u.update(myVai, kpsASN);

 // How to get elements from the Alt Spoken Names property set
 KeyedPropertySet kpsUser = u.getProperties();
 ips = kpsUser.getIndexedSet("Alt Spoken Names");
 String sASN2 = (String)ips.elementAt(1);
 System.out.println("Alt Spoken Name 2 = " + sASN2);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Here is a string representation of the indexed set of alternate spoken names

created in the previous code example. In contrast to the integer indexes in the

code example (which begin with 0), the indexes shown in the output begin with

1.

Alt Spoken Names = XVSet
 [
 1 = Jane
 2 = J D
]

The following code example shows some techniques for updating elements in

an IndexedPropertySet.

Example 37. Updating elements in an IndexedPropertySet

public static int updateAltSpokenNames() {
 int iResultCode = -1;
 try {
 // Search for existing user.
 String sUid = "Doe,Janet";
 UserSet usGlobal = User.getUsers(myVai);

Persisting Application Data

Working With Properties ··· 55

 int iFind = usGlobal.findFirstMatch(sUid);
 User u = usGlobal.elementAt(iFind);

 // Get the indexed set of Alt Spoken Names
 KeyedPropertySet kpsUser = u.getProperties();
 IndexedPropertySet ipsASN =
 kpsUser.getIndexedSet("Alt Spoken Names");

 // Replace ASN "Jay Jay" with "Miss Doe"
 String sOldName = "Jay Jay";
 String sCurrentName = "";
 String sNewName = "Miss Doe";
 for (int i = 0; i < ipsASN.size(); i++) {
 sCurrentName = (String)ipsASN.elementAt(i);
 if (sCurrentName.equals(sOldName)) {
 ipsASN.setElementAt(sNewName, i);
 }
 }

 // Update the user's alternate spoken names
 KeyedPropertySet kpsUpdate = new KeyedPropertySet(myVai);
 kpsUpdate.putSet("Alt Spoken Names", ipsASN);
 u.update(myVai, kpsUpdate);

 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Persisting Application Data

If your VAI application needs to persist data or settings from one session to

the next, you need to consider implementing some type of persistent data

storage. There are several ways to do this, including using configuration files

or relational database systems. VAI provides a simple way to persist application

data by allowing you to write a PropertySet file to the Vocera Server, where

the application can reliably read the data for subsequent sessions.

The PropertySet class provides the following methods for persisting

application data on the Vocera Server.

 Persisting Application Data

56 ··· Vocera Administration Interface Guide

Table 8. Methods for writing and reading application data

Method Description

writeApplicationData(java.lang.String
sAppName, java.lang.String sFileName,
java.lang.String sPropertyPath)

Writes application data to application data file
stored on the Vocera server.

readApplicationData(VAI vai,
java.lang.String sAppName,
java.lang.String sFileName,
java.lang.String sPropertyPath)

Reads data from an application data file stored
on the Vocera Server into a PropertySet.

The following example shows how to use VAI methods to write and read

application data.

Example 38. Writing and reading application data

public static void writeAppData(String sAppName, String sFile){
 try {
 //Create a new keyed property set
 KeyedPropertySet kpsApp = new KeyedPropertySet(myVai);
 //Add some properties to the set
 kpsApp.putString("Version", "1.0");
 kpsApp.putString("Role", "Administrator");
 kpsApp.putString("Unit", "CICU");

 //Create an indexed property set of colors
 //and add it to the set
 IndexedPropertySet ipsColors = new IndexedPropertySet(myVai);
 ipsColors.add("Red");
 ipsColors.add("Green");
 ipsColors.add("Blue");
 kpsApp.putSet("Colors", ipsColors);

 //Write the application data to a file
 kpsApp.writeApplicationData(sAppName,sFile,"");
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}
public static void readAppData(String sAppName, String sFile){
 try {
 //Create a new keyed property set
 KeyedPropertySet kpsApp = new KeyedPropertySet(myVai);
 //Read the application data
 kpsApp = (KeyedPropertySet)PropertySet.readApplicationData(
 myVai,
 sAppName,
 sFile,
 ""
);

Persisting Application Data

Working With Properties ··· 57

 //Print the application data
 System.out.println(kpsApp.toString());
 }catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
}

Here is the output generated from the readAppData() method in the previous

code example:

KVSet
[
 Version = 1.0
 Role = Administrator
 Unit = CICU
 Colors = XVSet
 [
 1 = Red
 2 = Green
 3 = Blue
]
]

For more details about using the writeApplicationData() and

readApplicationData() methods, see the Javadoc reference for the

PropertySet class.

 Persisting Application Data

58 ··· Vocera Administration Interface Guide

Managing the Vocera Server ··· 59

 Managing the Vocera Server

This section describes how to control, manage, and monitor the Vocera Server.

Connecting to the Vocera Server

This topic describes techniques for opening a basic VAI connection,

authenticated by a user name and password, to a Vocera Server. See Security

Features on page 73 for more information about controlling access to VAI

applications and to the Vocera Server.

In the simplest case, you can construct a VAI object using the default

constructor, then call the open() method to establish a connection to the

Vocera Server. Once you have opened a VAI object, the other methods in

VAI and those of other classes in the interface can be called. Many of these

methods (the static ones in particular) require the opened VAI object to be

passed as their first argument. At the end of the session, call close() to

disconnect from the Vocera Server.

Note: VAI cannot open a connection to a server that has been stopped. For

example, if a person has stopped the server by clicking the Stop button in the

Vocera Control Panel, someone must click the Start button to enable VAI to

open a connection.

Using the VAI.open() Method

The VAI.open() call takes as arguments the IP address of the Vocera Server,

user ID and password, and an instance of the VAIListener class. The IP

address must be a dotted IP address, for example, 192.168.1.2. You cannot

specify localhost or 127.0.0.1, its equivalent loopback address. Do not

specify a port.

 Using the VAI.open() Method

60 ··· Vocera Administration Interface Guide

To open a connection to a Vocera Cluster installation, specify a comma-

separated list of the addresses of the servers in the cluster. If a failover occurs,

one of the standby nodes becomes active and takes control of the cluster. The

open() call also takes a VAIListener object as an argument. This argument

allows your application to monitor server state changes. Simple applications

may not need this information, and can use a null value for the parameter.

If your application loses its connection to the Vocera Server, it can monitor

the server and automatically reopen a connection when another server in the

cluster becomes active. See Monitoring the Vocera Server on page 67 for

details.

The user ID and password arguments are those normally prompted for by the

Administration Console. You can supply Administrator as the user name and

the system administration password as the password, or you can supply the user

ID and password of a user who has full administrative privileges. For simplicity,

examples in this section hard-code the login credentials. When security is a

concern, an application should prompt for login credentials at the beginning of

each VAI session.

The following code listing shows how to use the open() method.

Example 39. Opening a connection

import vai.*;

public class VaiDemo {
 public static VAI myVai = new VAI();

 private class MyVaiListener implements VAIListener {
 public void handleServerStateChange(int iState) {
 System.out.println("Vocera server state has changed: "
 + VAI.getServerStateString(iState));
 }
 public void handleReportStatus(String s1, int i1,
 String s2, int i2,
 String s3) {
 System.out.println("Reporting a server status change.");
 }
 }

 public MyVaiListener myL;

 public VaiDemo() {
 myL = new MyVaiListener();
 }

 public int demoOpen() {
 int iResultCode = -1;
 try {

Result Codes for the open() Method

Managing the Vocera Server ··· 61

 myVai.open("192.168.1.2", "Administrator",
 "admin", this.myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 System.out.println("Code: " + ve.getResultCode());
 System.out.println("Message: " + ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }

 public static void main(String[] args) {
 VaiDemo demo = new VaiDemo();
 int iResultCode = demo.demoOpen();
 if (iResultCode == 0) {
 myVai.close();
 }
 }
}

The following open() method passes null for the VAIListener object,

which means it does not monitor server state changes.

myVai.open("192.168.1.2","Administrator","admin",null);

The following open() method passes the hostname, an individual username

who has full administrative privileges, the user's password, and a VAIListener

object, which means it monitors server state changes.

myVai.open("vocserver","jdoe","sesame",this.myL);

The following open() method specifies a cluster of three Vocera Servers,

Administrator username and password, and a VAIListener object, which

means it monitors server state changes.

myVai.open("voc1,voc2,voc3","Administrator","admin",this.myL);

Note: If Active Directory authentication has been enabled on the Vocera Server,

there is an alternative method called openWithADLogin() that allows you to

open a connection to the Vocera Server using Active Directory credentials. For

details, see the Javadoc for the VAI class.

Result Codes for the open() Method

If a connection cannot be established, the open() method returns a result code

to indicate why it failed. The following table lists some of the reasons that the

open() method might fail. For complete information, see the Javadoc for the

VAIException class.

 Getting Vocera Server Properties

62 ··· Vocera Administration Interface Guide

Table 9. Error codes for a failed connection

Error Code Message

rcCannotConnect Could not connect to server.

rcConnectionRefused Connection to server refused.

rcInvalidPassword Invalid password.

rcLicenseLimit No more user licenses available.

rcLoginLimit No more login licenses available.

Getting Vocera Server Properties

The VAI class provides the following methods for querying the properties of a

Vocera Server.

Table 10. Methods for querying the properties of a Vocera Server

Method Description

getSystemProperties() Returns a keyed property set for a
specified Vocera system. Properties
include Product Major Version,
Product Major Version, Locale,
and Voice Prints Enabled.

See VAI Example on page 18 for a
code example.

getServerStateString(int
iServerState)

Returns a string describing the
server's current state. Values include
"Could not connect to server",
"Server stopped", and "Server
started". A full list of server states
is found in the VAIListener
interface.

getLicenseInfo() Returns a LicenseInfo object.
A LicenseInfo object exposes
several public fields that represent
various aspects of a Vocera license.
For example, the cDigitalLines field
stores an integer value representing
the maximum allowed number of
digital phone lines.

Setting Vocera Server Properties

Managing the Vocera Server ··· 63

The following code example uses a LicenseInfo object to get information

about the number of digital phone lines allowed and in use by a server.

Example 40. Getting license information

public int getDigitalLinesInfo() {
 int iResultCode = -1;
 try {
 LicenseInfo li = myVai.getLicenseInfo();
 int iMaxLines = li.cDigitalLines;
 int iCurrLines = li.cCurrentDigitalLines;
 System.out.println("Currently using " +
 iCurrLines +
 " of " +
 iMaxLines +
 " available lines.");
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Setting Vocera Server Properties

The VAI class provides the updateSystemProperties() method. This

method takes one argument, a property set that contains the property values

you want to update.

The following code example uses the updateSystemProperties() method

to set properties for Company, Days To Keep Messages, and Default User.Low

Battery Alert.

Example 41. Updating Vocera Server properties

private void updateSysProps() {
 try {

 // Create a new keyed property set for system properties
 KeyedPropertySet kpsSys = new KeyedPropertySet(myVai);
 kpsSys.putString("Company","Vocera Communications");
 kpsSys.putInt("Days To Keep Messages", 7);

 // Create a keyed property set for Default User properties
 KeyedPropertySet kpsDefUser = new KeyedPropertySet(myVai);
 kpsDefUser.putBoolean("Low Battery Alert", false);

 // Add Default User property set to the System property set
 kpsSys.putSet("Default User", kpsDefUser);

 // Update system properties
 myVai.updateSystemProperties(kpsSys);

 Controlling the Vocera Server

64 ··· Vocera Administration Interface Guide

 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 }
 }

Controlling the Vocera Server

If you have an open VAI connection, you can stop and start a Vocera Server

programmatically. However, VAI cannot open a connection to a server that

has been stopped. For example, if a person has stopped the server by clicking

the Stop button in the Vocera Control Panel, someone must click the Start

button to enable VAI to open a connection. Similarly, if VAI code stops the

server and then closes the connection, you will not be able to restart the server

programmatically.

Note: Because you cannot connect to the server when it is stopped, you

may want to embed the open() call in a loop that repeatedly tries to open a

connection until it succeeds.

The VAI class implements the following methods for controlling a Vocera

Server.

Table 11. Methods for controlling the Vocera Server

Method Description

startServer() Starts the Vocera Server, as if you had clicked
the Run button in the Vocera control panel.

stopServer() Stops the Vocera Server, as if you had clicked
the Stop button in the Vocera control panel.

restartServer() Shuts down the Vocera Server and all
associated services (simulating a fail-
over), and then restarts them. Calling
restartServer() is not the same as
calling stopServer() and then calling
startServer(). The effects of calling
restartServer() are more drastic.

The following code example opens a connection to a Vocera Server, stops

the server, and then starts the server. This simple example is designed to

demonstrate several VAI class methods. In a production environment, when

you really want to restart the server (as opposed to stopping the server, doing

Managing the Vocera Database

Managing the Vocera Server ··· 65

something, and then starting the server), use the restartServer() method.

Moreover, rather than depending on timers, you should rely on VAIListener

call-backs to track changes to server states. See Monitoring the Vocera

Server on page 67.

Example 42. Stopping and starting the Vocera Server

public static void stopStartServer() {
 VaiDemo demo = new VaiDemo();
 try {
 myVai.open("10.0.1.2",
 "Administrator",
 "admin",
 demo.myL);

 myVai.stopServer();

 // Give the server time to shut down.
 Thread.sleep(20000); // 20 seconds

 myVai.startServer();

 // Give the server time to restart.
 Thread.sleep(20000); // 20 seconds

 myVai.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " + ve.getMessage());
 } catch (InterruptedException ie) { // For Thread.sleep
 System.out.println(ie.getMessage());
 }
 }

Managing the Vocera Database

The VAI class implements the following methods for managing a Vocera

database.

Table 12. Methods for managing a Vocera database

Method Description

backup() Backs up the Vocera database, creating a
new .zip file in \vocera\backup.

restore(java.lang.String
sFileName)

Restores the Vocera database from a specified
backup file in the \vocera\backup directory.

emptyDatabase() Empties the Vocera database.

 Managing the Vocera Database

66 ··· Vocera Administration Interface Guide

Method Description

getBackupFileNames() Retrieves the names of backup files in the
\vocera\backup directory on the Vocera
Server computer.

The following code example prints a list of backup files, prompts the user to

enter a backup file name, then uses the specified file to restore the Vocera

database. Only the file name needs to be specified, not the full path. The path

is <Vocera_Drive>:\vocera\backup on the Vocera Server.

Example 43. Restoring the Vocera database from a backup file

public static void promptAndRestore() {
 VaiDemo demo = new VaiDemo();
 try {
 myVai.open("qalab4",
 "Administrator",
 "admin",
 demo.myL);

 // Retrieve the array of backup filenames
 String[] saBakFiles = myVai.getBackupFileNames();
 System.out.println("Backup Files:");
 for (int i = 0; i < saBakFiles.length; i++) {
 System.out.println(saBakFiles[i]);
 }
 System.out.println("Enter the name of a Backup File: ");

 java.io.BufferedReader in =
 new java.io.BufferedReader(
 new java.io.InputStreamReader(System.in)
);
 String sFileName = in.readLine();

 // Restore the backup file.
 // (Error checking omitted for simplicity.)
 myVai.restore(sFileName);

 // Close the connection
 myVai.close();

 } catch (VAIException ve) {
 System.out.println("VAI Exception: " + ve.getMessage());
 } catch (java.io.IOException ioe) { // For in.readLine
 System.out.println(ioe.getMessage());
 }
}

Monitoring the Vocera Server

Managing the Vocera Server ··· 67

Monitoring the Vocera Server

The VAI.open() call takes a VAIListener object as an argument. This

argument allows your application to monitor server state changes. Simple

applications may not need this information, and can use a null value.

If you choose to monitor server state changes in your application, make sure

you implement the following methods defined in the VAIListener interface:

Table 13. Methods for monitoring the Vocera Server

Method Description

handleServerStateChange(int iState) Starting, stopping, and closing the VAI
connection to the server all trigger events
that your VAIListener implementation
can handle based on the current state of
the server. The iStatus parameter of the
handleServerStateChange() method
represents a server status code defined in
VAIListener.

Important: The VAIListener runs on an
internal call-back thread separate from the
VAI thread. Therefore, you cannot make
calls from VAIListener back to the VAI
instance. Otherwise, your program may hang.

handleReportStatus(java.lang.String
sTitle, int iStatus, java.lang.String
sStatus, int iPercentDone,
java.lang.String sError)

Handles status information reported as a result
of bulk operations, such as database backup
and restore operations.

The following code listing shows how a simple listener responds as the server is

stopped and restarted.

Example 44. Using VAIListener to monitor the Vocera Server

import vai.*;

public class VaiDemo {
 public static VAI myVai = new VAI();
 public static String sServerIP = "10.37.41.20,10.37.41.21";
 public static String sAdminUser = "Administrator";
 public static String sAdminPassword = "admin";

 private class MyVaiListener implements VAIListener {

 boolean bStopped = false;
 boolean bStarted = true;

 public void handleServerStateChange(int iState)

 Monitoring the Vocera Server

68 ··· Vocera Administration Interface Guide

 System.out.println("Vocera Server state has changed: " +
 VAI.getServerStateString(iState));
 if (iState==VAIListener.ssStopped) {
 bStopped = true;
 bStarted = false;
 } else if (iState==VAIListener.ssStarted) {
 bStarted = true;
 bStopped = false;
 }
 }
 // handleReportStatus is defined in VAIListener
 // Note: iStatus is one of rs codes in VAIListener,
 // sError is empty unless iStatus == rsError.
 public void handleReportStatus(String sTitle,
 int iStatus,
 String sStatus,
 int iPercentDone,
 String sError)
 {
 System.out.println("Reporting a server status change.");
 System.out.println("[Report Title] \t" + sTitle);
 System.out.println("[Status Code] \t" + iStatus);
 System.out.println("[Status Msg] \t" + sStatus);
 System.out.println("[Percent Done] \t" + iPercentDone);
 System.out.println("[Error Msg] \t" + sError);
 System.out.println("End of status report.");
 }
 }

 public MyVaiListener myL;

 public VaiDemo() {
 myL = new MyVaiListener();
 }

 public static void main(String[] args) {
 VaiDemo demo = new VaiDemo();

 try {
 int iResultCode = demo.openConnection();
 if (iResultCode==0) {
 myVai.stopServer();
 while (!demo.myL.bStopped) {
 Thread.sleep(5000);
 }
 myVai.startServer();
 while (!demo.myL.bStarted) {
 Thread.sleep(5000);
 }
 demo.openConnection();
 }
 } catch (Exception ex) {
 System.out.println(ex.getMessage());

Vocera Server States

Managing the Vocera Server ··· 69

 }
 }

 private void openConnection() {
 int iResultCode = rcInitResult;
 try {
 System.out.println("Opening connection to server...");
 myVai.open(sServerIP,sAdminUser,sAdminPassword, myL);
 iResultCode = rcOK;
 } catch (VAIException ve) {
 System.out.println(ve.getMessage());
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
 }
}

Vocera Server States

When you call the handleServerStateChange() method defined in the

VAIListener interface, you can specify how to handle each state change that

occurs to the Vocera Server while your application is running. For example, if

you determine that the server is started, you can reopen the connection to it.

Table 14. Vocera Server states

Server State Description

ssCancelStart Server start cancelled.

ssEmpty Empty operation in progress.

ssNotConnected No connection to server.

ssRestore Restore operation in progress.

ssStandby Server in cluster standby mode.

ssStarted Server process started.

ssStarting Server process starting.

ssStopped Server process stopped.

ssStopping Server process stopping.

 Vocera Server States

70 ··· Vocera Administration Interface Guide

Error Handling ··· 71

 Error Handling

VAI uses the Java exception mechanism to report runtime errors. When a

method triggers a error, the Java runtime framework creates an exception

object that contains information about the error. This process is called throwing

an exception. To handle the error, an application must catch the exception.

For example, the Address.create() method throws an exception when it

triggers a runtime error. Therefore, you must wrap the Address.create() call

in a try...catch block, as shown in the following code example.

Example 45. Catching an exception

KeyedPropertySet kpsAddress = new KeyedPropertySet(myVai);
kpsAddress.putString("Last Name", "Jones");
try {
 Address a = Address.create(myVai, kpsAddress);
} catch (VAIException ve) {
 System.out.println(ve.getMessage());
}

Using the VAIException Class

Most of the methods exposed in VAI classes throw a VAIException, defined

in the class of that name, in case of an error. An error may be thrown for many

reasons, including among others:

• The VAI connection to the Vocera server was not open when the method was

called.

• One or more method arguments are invalid.

• The entity on which the method was called has been deleted.

The VAIException class contains two methods to help you determine the

reason for the error and display it to the user of your application, if desired:

 Using the VAIException Class

72 ··· Vocera Administration Interface Guide

Table 15. Methods for returning information about exceptions

Method Description

getResultCode() Returns one of the integer constants defined
in the VAIException class. VAI error code
values are all greater than 0. Consequently,
you can use a value of 0 as the result code for
a successful operation. The VAIException
class defines integer constants such as
rcLicenseLimit to represent VAI error
codes. These constants are described in the
Javadocs for the VAIException class.

getMessage() Returns a locale-specific string containing an
error message.

The following code example shows how getMessage() and

getResultCode() can provide information when an error occurs.

Example 46. Getting exception messages and result codes

// Initial result code value.
public final static int rcInitResult = -1;
// Result code for successful operation.
public final static int rcOK = 0;

public int open(String sHost, String sUserName, String sPassword) {
 int iResultCode = rcInitResult;
 try {
 myVai.open(sHost, sUserName, sPassword, null);
 iResultCode = rcOK;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 if (iResultCode == VAIException.rcLicenseLimit) {
 System.out.println(ve.getMessage());
 }
}

Security Features ··· 73

 Security Features

This section describes VAI security features.

Controlling Access

VAI applications can use certificates to authenticate users with a Vocera Server.

The VAI class provides the following methods for working with certificates.

Table 16. Methods for working with certificates

Method Description

makeCertificateString(java.lang.String
sAdminLogin, java.lang.String
sAdminPassword, java.lang.String[]
saAppPasswords, boolean bUserIDPassword)

Creates a digital certificate, represented
as a String, to be passed to the
openWithCertificateString()
method. You can specify null instead of
an array of passwords when you create a
certificate string. A user can then log in
to the VAI application by providing his or
her Vocera password.

makeCertificateFile(java.lang.String
sFileName, java.lang.String sAdminLogin,
java.lang.String sAdminPassword,
java.lang.String[] saAppPasswords, boolean
bUserIDPassword)

Like makeCertificateString(),
but stores the certificate in a file
with the given fully-qualified
name, to be passed to the
openWithCertificateFile()
method.

You can also use the mc.bat utility on
the Vocera Developer Kit CD to create
a certificate file. See Using the mc.bat
Utility on page 75.

 Controlling Access

74 ··· Vocera Administration Interface Guide

Method Description

makeAppCertificateFile(java.lang.String
sAppName, java.lang.String sFileName,
java.lang.String sAdminLogin,
java.lang.String sAdminPassword,
java.lang.String[] saAppPasswords, boolean
bUserIDPassword)

Like makeCertificateFile(),
but stores the certificate file with
the given application on the
Vocera Server, to be passed to the
openWithAppCertificateFile()
method.

openWithCertificateString(java.lang.String
sServerList, java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sCertificate, VAIListener
l)

Opens the VAI interface object using an
application password and a certificate
represented as a String.

openWithCertificateFile(java.lang.String
sServerList, java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sFileName, VAIListener l)

Opens the VAI interface object using an
application password and a certificate
file.

openWithAppCertificateFile(java.lang.String
sServerList, java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sAppName, java.lang.String
sFileName, VAIListener l)

Opens the VAI interface object using an
application password and a certificate
file stored with the given application on
the Vocera Server. This method is useful
for developing secure GUI applications
hosted on the Vocera Server that do not
require System Administrator permission
to log in.

The VAI security mechanism supports application-specific passwords, so you

can enable users to log in to a VAI application without giving them a Vocera

administrator user name and password.

The following code example combines several aspects of working with

certificates and application-specific passwords. In practice, you would probably

perform the steps separately.

Example 47. Using certificates with application passwords

public int openUsingCert1() {
 int iResultCode = -1;
 try {
 String[] saPass = { "green", "yellow", "purple" };
 String sCert =
 VAI.makeCertificateString("Administrator",
 "admin",
 saPass,
 false);
 myVai.openWithCertificateString("192.168.1.1",
 "mdavis",

Using the mc.bat Utility

Security Features ··· 75

 "yellow",
 sCert,
 myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Important: You should never hard-code passwords within an application.

Always provide a login user interface with which a user can supply a password.

You can also use certificates without specifying application passwords, as

shown in the following code example. This example is designed to show several

related techniques at a glance. In a production application, you would perform

these steps separately.

Example 48. Using certificates without application passwords

public int openUsingCert2() {
 int iResultCode = -1;
 try {
 String sCert = VAI.makeCertificateString("Administrator",
 "admin",
 null,
 true);
 myVai.openWithCertificateString("192.168.1.1",
 "mdavis",
 "sowhat",
 sCert,
 myL);
 iResultCode = 0;
 } catch (VAIException ve) {
 iResultCode = ve.getResultCode();
 }
 return iResultCode;
}

Using the mc.bat Utility

Vocera provides a batch file named mc.bat that you can use to encrypt

login credentials and create a certificate file. The batch file provides a simple

command-line interface that prompts you for the values needed to create a

certificate.

To use the mc.bat utility to create a certificate file:

1. Copy the mc.bat file from the VAI\server directory on the Vocera

Developer Kit CD into a location on your Vocera server machine.

 VAI and Tiered Administrators

76 ··· Vocera Administration Interface Guide

2. Run mc.bat.

The program opens a Command Prompt window, allowing you to enter

several parameters needed to create a certificate file.

3. Enter values for the filename, administrator login ID, administrator

password, number of application passwords, and each individual application

password.

When you are finished, the utility creates a certificate file in the same

directory.

The following figure shows an example of how the mc.bat utility was used to

create a certificate file named certificate.txt.

Figure 3. Using mc.bat to create a certificate

VAI and Tiered Administrators

The Vocera Administration Console lets you grant users different levels of access

to administrative features, effectively distributing administration responsibility

for the Vocera server to several tiered administrators. Tiered administrators

are Vocera users with some but not all administrative privileges based on

their membership in one or more groups. For more information about tiered

administrators, see the Vocera Administration Guide.

Unlike the Vocera Administration Console, VAI does not support tiered

administrators. Anyone who is able to log into a VAI application has access to

whatever Vocera administrative features that the application exposes. However,

you can choose to expose only certain administrative features in your VAI

application, or you can restrict the application to only certain users.

Encrypted Passwords

Security Features ··· 77

Encrypted Passwords

You can use VAI to update passwords, but you cannot retrieve them. VAI

uses strong public key cryptography to protect passwords. Once encrypted,

passwords are never decrypted anywhere within VAI and within the Vocera

Server code.

You should not hard-code credentials into your application. Prompt for them at

the beginning of each session.

Authenticating VAI Applications

On the System > License Info tab of the Vocera Administration Console,

the Vocera administrator can enter a comma-separated list of IP addresses in

the VAI Application IP Addresses field to specify which computers running

VAI applications are allowed to connect to the Vocera Server. This prevents a

rogue application from accessing the Vocera Server. If you leave this field blank,

all VAI applications will be allowed to connect to the Vocera Server. For more

information, see the Vocera Administration Guide.

Best Practices for Multiuser Applications

A VAI application can be designed to support multiple simultaneous users. For

example, you can develop a Web application with a client interface that runs in

a browser. For best performance, your multiuser VAI application should follow

these guidelines:

• Use a shared connection – To optimize performance and network I/O and

to reduce the multiuser stress on the server, you should design multiuser VAI

applications to use only a single, shared connection to the Vocera Server.

Important: The Vocera Server cannot handle many simultaneous VAI

connections. You should always test your multiuser application on a test

server to see if it can handle the load of multiple simultaneous users.

• Open the connection with a digital certificate – If your application is

designed for people without System Administration permission, use one of

the VAI methods to create a digital certificate to authenticate users logging

into the application. When you open the VAI connection, use one of the VAI

methods to open a connection using the digital certificate. See Controlling

Access on page 73.

• Check login credentials – Implement methods to verify the credentials

of each user logging into the application. The VAI class provides several

methods for verifying login credentials.

 Best Practices for Multiuser Applications

78 ··· Vocera Administration Interface Guide

• Make your application thread-safe – To prevent thread interference and

memory consistency errors, synchronize access to shared resources.

A servlet is one example of a multiuser Web application. The following figure

shows a servlet running in Tomcat on the Vocera Server computer. Multiple

users can connect to the servlet using a browser.

Figure 4. Servlet example

Users can log into a multiuser VAI application using one of the following types

of credentials:

• Administrator credentials – System Adminstrator credentials for the Vocera

system. This can be the Vocera user ID and password of a user with System

Administrator permission, or the "Administrator" ID and password.

• User credentials – Vocera user ID and password. The Vocera password can

be a null string (""). However, for security reasons your application should

require a non-blank password.

• Application credentials – VAI application credentials that satisfy an

application certificate.

The VAI class provides the following methods for checking whether login

credentials are valid.

Table 17. Methods for working with certificates

Method Description

checkAdminCredentials(java.lang.String
sLogin, java.lang.String sPassword)

Returns true if the credentials are for a
valid Vocera System Administrator.

checkADAdminCredentials(java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sADConfigName)

Returns true if the Active Directory
credentials are for a valid Vocera System
Administrator.

checkUserCredentials(java.lang.String
sLogin, java.lang.String sPassword)

Returns true if the credentials are for a
valid Vocera user.

Best Practices for Multiuser Applications

Security Features ··· 79

Method Description

checkADUserCredentials(java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sADConfigName)

Returns true if the Active Directory
credentials are for a valid Vocera user.

checkAppCredentials(java.lang.String
sLogin, java.lang.String sPassword,
java.lang.String sAppName, java.lang.String
sFileName)

Returns true if the credentials are valid
for the application certificate.

For more information about VAI methods for checking login credentials, see the

VAI Javadoc reference.

 Best Practices for Multiuser Applications

80 ··· Vocera Administration Interface Guide

Property Reference ··· 81

 Property Reference

The following topics are a reference to the property keys and values of various

VAI entities. All property values can be updated except where specifically

indicated.

• Address Properties on page 82

• Contact Properties on page 84

• Device Properties on page 85

• Group Properties on page 87

• Location Properties on page 106

• Site Properties on page 108

• User Properties on page 123

• System Properties on page 134

 Address Properties

82 ··· Vocera Administration Interface Guide

Address Properties

The following table lists the properties of an Address Book Entry. The Vocera

address book is a convenient way for badge users to contact places and people

who are not badge users.

Since: 4.0

Table 18. Address properties

Key Description

Last Name The last name of a person or the name of a
place.

Datatype: String

Maximum Length: 50 characters

Required: Yes

First Name The first name of a person. If the Address is a
place rather than a person, enter "" (an empty
string).

Datatype: String

Maximum Length: 50 characters

Required: Yes

Alt Spoken Names Property set containing up to three variations of
the spoken name of the person or place.

Datatype: IndexedPropertySet

Required: No

Alt Spoken Names.* Represents each Alternate Spoken Name in the
property set.

Datatype: String

Maximum Length: 50 characters

Required: No

Ident Phrase An identifying phrase that distinguishes
a person or place from another with the
same name. Example: Rita Clark in
Staffing

Datatype: String

Maximum Length: 100 characters

Required: No

Address Properties

Property Reference ··· 83

Key Description

Email Address An optional email address, which allows users
to send voice messages as an email attachment.
Example: jdoe@vocera.com

Datatype: String

Maximum Length: 40 characters

Required: No

Desk Phone The desk phone number or extension for the
person or place.

Datatype: String

Maximum Length: 75 characters

Required: No

Pager Phone Pager number for the person or place.

Datatype: String

Maximum Length: 75 characters

Required: No

Site The home site for the person or place. If the
entire organization uses this address book entry,
choose the Global site. If you don't specify a
site, the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

 Contact Properties

84 ··· Vocera Administration Interface Guide

Contact Properties

The following table lists the properties of a Contact. The Contact class

represents an outside buddy as a VAI entity.

Since: 4.0

Table 19. Contact properties

Key Description

Last Name An outside buddy's last name.

Datatype: String

Maximum Length: 50 characters

Required: Yes

First Name An outside buddy's first name.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Email Address An optional email address, which allows users
to send voice messages as an email attachment.
Example: jdoe@vocera.com

Datatype: String

Maximum Length: 60 characters

Required: No

Desk Phone The desk phone number or extension for the
outside buddy.

Datatype: String

Maximum Length: 75 characters

Required: No

Pager Phone Pager number for the outside buddy.

Datatype: String

Maximum Length: 75 characters

Required: No

Owner The user for whom this is a personal contact
(that is, the owner of this outside buddy).
Cannot be updated.

Datatype: User object

Device Properties

Property Reference ··· 85

Device Properties

The following table lists the properties of a Device. The Device class represents

a device, such as a badge, that connects to the Vocera system.

Since: 4.1

Table 20. Device properties

Key Description

MAC Address Specifies the unique MAC address of the device.

Datatype: String

Maximum Length: 12 characters

Required: Yes

Serial No The device serial number.

For B2000 badges, the serial number is 12
characters. For B1000A badges, the serial
number is 15 characters.

Datatype: String

Maximum Length: 15 characters

Required: No

Label The label applied to the device for identification
purposes.

Datatype: String

Maximum Length: 20 characters

Required: No

Status The device status. The value you specify must
match one of the existing device status values.

Datatype: String

Maximum Length: 20 characters

Required: No

Tracking Time A time used to track the device. This time could
be mapped to any internal tracking event,
such as the date when the device was assigned
to a user or sent for repair. The time value is
specified as the number of milliseconds since
1/1/70 00:00 GMT.

Datatype: long

Required: No

 Device Properties

86 ··· Vocera Administration Interface Guide

Key Description

Owning Group The group that owns the device.

Datatype: Group object, or a string
representing the group's internal name.

Required: No

Notes Notes about the device. For example, you could
include more information about the device
status.

Datatype: String

Maximum Length: 1000 characters

Required: No

Site The device's home site. If you don't specify a
site, the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

Shared Indicates whether the device is shared by
multiple users.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 87

Group Properties

The following table lists the properties of a Group. Vocera groups organize

users into roles such as Floor Manager, Cashier, Nurse, Cardiologist, Executive,

and so forth.

Since: 4.0

Table 21. Group properties

Key Description

Group Type A string indicating the type of group. Enter
Ordinary or Department

Datatype: String

Required: No

Name The name of the group. The name must start
with a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Spoken Name An optional alternate spoken name for the
group. For example, some people might say
"the Sales team" instead of "Sales." If you
enter the Sales team as a spoken name,
the Genie will recognize "Call the sales team."

Datatype: String

Maximum Length: 50 characters

Required: No

Spoken Member Name Enter a name that describes a member of
the group. For example, in the group called
Sales, a group member would be known as a
sales person. This would allow the Genie
to recognize a command such as, "Call a sales
person."

Datatype: String

Maximum Length: 50 characters

Required: No

 Group Properties

88 ··· Vocera Administration Interface Guide

Key Description

Spoken Members Name Optional plural name that collectively describes
the members of the group. For example, in
the group called Sales, the collection of group
members could be called sales people.
This would allow the Genie to recognize a
command such as, "Send a message to all sales
people."

Datatype: String

Maximum Length: 50 characters

Required: No

Phone Phone number or extension.

If the telephony integration option is installed,
outside callers who dial the Vocera hunt number
can connect to the group by entering the group
extension at the Genie prompt, instead of
saying the group name.

Datatype: String

Maximum Length: 75 characters

Required: No

Pager Pager number for the group.

You can configure Vocera to forward a group's
calls to this specified pager.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.1

Group Properties

Property Reference ··· 89

Key Description

Scheduling Type Specify a scheduling option to indicate how
calls to the group should be distributed. Enter
Sequential or Round Robin.

Choose Sequential if you want one person
to be the main contact. The second member in
the group list is called only if the first person is
not available, a third member is called only if
the first two are unavailable, and so forth.

Choose Round Robin if you want calls to
be distributed as evenly as possible among
group members. When you choose round robin,
Vocera iterates through members in the group
until someone accepts the call; however, the
person who most recently accepted a group call
is tried last.

Datatype: String

Required: No

PIN Specify a value of the PIN for long distance
calls. A telephony PIN authorizes members of
a Vocera department to make phone calls and
allows an organization to charge departments
for those calls. A PIN can include digits, special
characters, and PIN macros.

Enter a PIN value only if you are working with a
department group.

Datatype: String

Maximum Length: 50 characters

Required: No

Cost Center The department's Cost Center ID, which enables
Vocera to track system usage by department
and potentially allows an organization to charge
its departments for relative usage.

Enter a Cost Center value only if you are
working with a department group.

Datatype: String

Maximum Length: 50 characters

Required: No

 Group Properties

90 ··· Vocera Administration Interface Guide

Key Description

Auto Remove Specifies whether membership in the group is
temporary.

If true, Vocera automatically removes
users from the group when they log out,
but leaves the rest of the user profile in the
database. Users are not added into the group
automatically when they log back in.

Datatype: boolean

Required: No

Off Site Calls Specifies whether calls to members of the group
can be received at sites other than the group's
home site.

This property behaves the same for all groups,
including groups assigned to the Global site.
If your Vocera system has only one site, this
property does not apply.

Datatype: boolean

Required: No

Since: 4.2

Off Site Broadcasts Specifies whether broadcasts to members of the
group can be received at sites other than the
group's home site.

This property behaves the same for all groups,
including groups assigned to the Global site.
If your Vocera system has only one site, this
property does not apply.

Datatype: boolean

Required: No

Since: 4.2

No Call Specifies whether the group is used to grant
or revoke permissions only and should not be
callable. If true, calling and broadcasting to
this group is disabled.

Datatype: boolean

Required: No

Since: 4.2

Group Properties

Property Reference ··· 91

Key Description

Site The group's home site.

If your organization has multiple sites connected
to the same Vocera server, specify the home site
that represents the member's physical location.
If the group's membership spans multiple sites,
specify the Global site.

Datatype: Site object

Required: No

Forwarding Specify a forwarding option to indicate whether
calls should be forwarded, and, if so, where to
forward them. Enter None, Phone, Pager or
User.

• None means that if a call to the group is not
answered, the caller is prompted to leave a
message, and that message is delivered to all
members of the group.

• Phone transfers the unanswered call to the
number that you enter for the Forwarding
Number property. This feature requires the
telephony integration option.

• Pager transfers the unanswered call to the
number that you enter for the Pager property.
If the value for the Pager property is empty,
this option is invalid. This feature requires the
telephony integration option.

• User transfers the call to a particular badge
user, group, or address book entry when no
members of the original group can take the
call.

Datatype: String

Required: No

Forwarding Number Phone number used when Forwarding = Phone

Datatype: String

Required: No

Forwarding Name The User, Address, or Group to forward to when
Forwarding = User

Datatype: Entity

Required: No

 Group Properties

92 ··· Vocera Administration Interface Guide

Key Description

Forwarding When Specify which calls to forward. Enter All to
forward all calls, or Unanswered to forward
only unanswered calls.

Datatype: String

Required: No

Manager Group The group of users permitted to manage this
group. Specify a group that has management
privileges.

Datatype: Group

Required: No

Member Domain Group The group of users permitted to add themselves
to this group.

Datatype: Group

Required: No

Device Manager Group The group of users permitted to manage the
devices for this group.

Datatype: Group

Required: No

Since: 4.1

Permissions Permissions granted to members of this group.
For the properties in this set, a value of true
explicitly grants that permission for the group.

Datatype: KeyedPropertySet

Required: No

Permissions.Perform System
Administration

Sets whether to grant permission to perform
system administration, which gives a group full
administrative privileges in the Administration
Console, and automatically grants those group
members every other permission.

This permission overrides any revoked
permissions inherited by membership in other
groups, except the revoked Perform Server
Administration permission itself.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 93

Key Description

Permissions.Record Name
Prompts for Another User

Sets whether to grant permission to record
name prompts for other users, as well as groups
and address book entries. Name prompts
improve the usability of the Vocera system;
the Genie plays these name prompts when
necessary, instead of synthesizing speech.

Datatype: boolean

Required: No

Permissions.Log In as Another
User

Sets whether to grant permission to log in
as someone else, ignoring any voiceprint
authentication. This permission is useful when
an administrator needs to log in as another user
for whom voiceprint authentication has been
enabled.

Datatype: boolean

Required: No

Permissions.Call Internal Numbers Sets whether to grant permission to place calls
to internal telephone extensions by saying
the key phrase "Dial extension" (for example,
"Dial extension 4085"). This feature requires
Telephony Integration.

Datatype: boolean

Required: No

Permissions.Call Toll-Free
Numbers

Sets whether to grant permission to place calls
to phone numbers in toll-free calling areas. This
feature requires Telephony Integration.

Datatype: boolean

Required: No

Permissions.Call Toll Numbers Sets whether to grant permission to place calls
to phone numbers that are not in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean

Required: No

 Group Properties

94 ··· Vocera Administration Interface Guide

Key Description

Permissions.Forward Calls to
Badges

Sets whether to grant permission to forward
incoming calls to other badges. When this
permission is granted, users can specify
forwarding options through either the User
Console or voice commands.

Datatype: boolean

Required: No

Permissions.Forward Calls to
Internal Numbers

Sets whether to grant permission to forward
incoming calls to internal phone numbers. This
feature requires Telephony Integration. When
this permission is granted, users can specify
forwarding options through either the User
Console or voice commands.

Datatype: boolean

Required: No

Permissions.Forward Calls to Toll-
Free Numbers

Sets whether to grant permission to forward
incoming calls to phone numbers in toll-free
calling areas. This feature requires Telephony
Integration. When this permission is granted,
users can specify forwarding options through
either the User Console or voice commands.

Datatype: boolean

Required: No

Permissions.Forward Calls to Toll
Numbers

Sets whether to grant permission to forward
incoming calls to phone numbers that are not
in toll-free calling areas. This feature requires
Telephony Integration. When this permission is
granted, users can specify forwarding options
through either the User Console or voice
commands.

Datatype: boolean

Required: No

Permissions.Initiate Broadcasts Sets whether to grant permission to broadcast
to all users in a group at the same time.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 95

Key Description

Permissions.Initiate Broadcasts to
Everyone

Sets whether to grant permission to broadcast
to all users in the Everyone group for your site.

Datatype: boolean

Required: No

Permissions.Initiate Urgent
Broadcasts

Sets whether to grant permission to broadcast
an urgent call to every member in a group at
the same time.

An urgent broadcast has priority and breaks
through to everyone’s badge, even if the badge
is blocking calls or is in DND mode. See the
Vocera User Guide for more information about
urgent broadcasts.

Datatype: boolean

Required: No

Permissions.Place Urgent Calls Sets whether to grant permission to place an
urgent call or initiate an urgent three-way
conference call.

An urgent call or urgent three-way conference
call has priority and breaks through to a badge,
even if the badge is blocking calls or is in DND
mode. See the Vocera User Guide for more
information about urgent calls.

Datatype: boolean

Required: No

Permissions.Call Users at Other
Sites

Sets whether to grant permission to contact a
user whose home site or current site is different
from the home site or current site of the caller.

Datatype: boolean

Required: No

Permissions.Join Conference Sets whether to grant permission to enter or
leave a conference.

Vocera does not require users to have a
permission to use a conference; that is, any
user who is in a conference has access to the
conference feature.

Datatype: boolean

Required: No

 Group Properties

96 ··· Vocera Administration Interface Guide

Key Description

Permissions.Send Messages To
Everyone

Sets whether to grant permission to send a
message to all users in the Everyone group for
your site.

Datatype: boolean

Required: No

Permissions.Have Toll-Free Pager
Number

Sets whether to grant permission to have a
pager number that is in a toll-free calling area.
This feature requires Telephony Integration.

Vocera does not require users to have
permission to call pagers. If you allow users
the permission to have pager numbers, you are
implicitly allowing other users the permission to
call those numbers.

Datatype: boolean

Required: No

Permissions.Have Toll Pager
Number

Sets whether to grant permission to have a
pager number that is in a toll calling area. This
feature requires Telephony Integration.

Vocera does not require users to have
permission to call pagers. If you allow users
the permission to have pager numbers, you are
implicitly allowing other users the permission to
call those numbers.

Datatype: boolean

Required: No

Permissions.Require
Authentication to Log In

Sets whether group members must recite a
series of random digits when they log in. If the
voice does not match the recorded voiceprint,
users cannot log in.

This permission has no effect until a user records
a voiceprint. Also, this permission is effective
only if the Voice Prints Enabled system property
is set to true.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 97

Key Description

Permissions.Require
Authentication to Play Messages

Sets whether group members must recite
a series of random digits when they play
messages. If the voice does not match
the recorded voiceprint, users cannot play
messages.

This permission has no effect until a user records
a voiceprint. Also, this permission is effective
only if the Voice Prints Enabled system property
is set to true.

Datatype: boolean

Required: No

Permissions.Record your
Voiceprint

Sets whether to grant permission to record their
voiceprint. This permission is effective only if the
Voice Prints Enabled system property is set to
true.

Datatype: boolean

Required: No

Permissions.Erase your Voiceprint Sets whether to grant permission to erase their
previously-recorded voiceprints. This permission
is effective only if the Voice Prints Enabled
system property is set to true.

Datatype: boolean

Required: No

Permissions.Erase Voiceprint of
Another User

Sets whether to grant permission to erase the
voiceprint of another user. This permission is
effective only if the Voice Prints Enabled system
property is set to true.

Datatype: boolean

Required: No

Permissions.Locate Users or
Group Members

Sets whether to grant permission to locate other
users or group members. You can then issue
badge commands such as "Where is Melissa
Schaefer?" to find the physical location of a
user or group member. This feature is useful
only if location names have been defined and
access points have been assigned to locations.

Datatype: boolean

Required: No

 Group Properties

98 ··· Vocera Administration Interface Guide

Key Description

Permissions.Have VIP Status Sets whether to grant permission to complete a
call even when users are blocking calls or have
placed their badges in Do Not Disturb mode.

Datatype: boolean

Required: No

Permissions.Block and Accept
Calls

Sets whether to grant permission to issue the
Block and Accept voice commands to perform
selective call screening.

Beginning users who are granted this
permission may unintentionally block calls when
all they need is temporary use of the DND
button. You should enable these commands for
advanced users only.

This permission does not affect the ability to
block calls through the User Console.

Datatype: boolean

Required: No

Permissions.Record Utterances Sets whether to grant permission to record
utterances during Genie interactions. Use
this permission for troubleshooting speech
recognition problems.

Datatype: boolean

Required: No

Permissions.Monitor Users from
Administration Console

Sets whether to grant permission to view
information about logged-in group members
and their badges in the Administration Console.
This VAI permission is equivalent to the
View Users And Groups permission in the
Administration Console.

Datatype: boolean

Required: No

Permissions.Add/Edit/Delete Users Sets whether to grant permission to maintain
the Vocera database by adding, editing, and
deleting all features in a user profile, such as
alternate spoken names, group membership,
and so forth.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 99

Key Description

Permissions.Add/Edit/Delete
Temporary Users

Sets whether to grant permission to maintain
the Vocera database by adding, editing, and
deleting all features of the profiles of temporary
users.

Datatype: boolean

Required: No

Permissions.Edit Users Sets whether to grant permission to maintain
the Vocera database by editing existing user
profiles.

Datatype: boolean

Required: No

Permissions.Add/Edit/Delete
Address Book Entries

Sets whether to grant permission to maintain
the Vocera database by adding, editing, and
deleting address book entries. Also grants
permission to record a spoken name for address
book entries.

Datatype: boolean

Required: No

Permissions.Access Genie from
Phone Using Caller ID

Sets whether to grant permission to call the
Vocera hunt number from a phone and access
the Genie using a caller ID associated with the
phone. The caller's ID is matched against a
user's phone number in the Vocera database.

Datatype: boolean

Required: No

Since: 4.1

Permissions.Perform System
Device Management

Sets whether to grant permission to add, edit,
and delete devices and view the Status Monitor.

Datatype: boolean

Required: No

Since: 4.1

AntiPermissions For the properties in this set, a value of true
explicitly revokes that permission for the group
even if members belong to another group that
grants the permission.

Datatype: KeyedPropertySet

Required: No

 Group Properties

100 ··· Vocera Administration Interface Guide

Key Description

AntiPermissions.Perform System
Administration

Sets whether to revoke permission to perform
system administration. When this permission
is revoked, the group no longer has full
administrative privileges in the Administration
Console, and members are no longer granted
every other permission.

Datatype: boolean

Required: No

AntiPermissions.Record Name
Prompts for Another User

Sets whether to revoke permission to record
name prompts for other users, as well as groups
and address book entries.

Datatype: boolean

Required: No

AntiPermissions.Log In as Another
User

Sets whether to revoke permission to log
in as someone else, ignoring any voiceprint
authentication.

Datatype: boolean

Required: No

AntiPermissions.Call Internal
Numbers

Sets whether to revoke permission to place
calls to internal telephone extensions by saying
the key phrase "Dial extension" (for example,
"Dial extension 4085"). This feature requires
Telephony Integration.

Datatype: boolean

Required: No

AntiPermissions.Call Toll-Free
Numbers

Sets whether to revoke permission to place calls
to phone numbers in toll-free calling areas. This
feature requires Telephony Integration.

Datatype: boolean

Required: No

AntiPermissions.Call Toll Numbers Sets whether to revoke permission to place
calls to phone numbers that are not in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 101

Key Description

AntiPermissions.Forward Calls to
Badges

Sets whether to revoke permission to forward
incoming calls to other badges.

Datatype: boolean

Required: No

AntiPermissions.Forward Calls to
Internal Numbers

Sets whether to revoke permission to forward
incoming calls to internal phone numbers. This
feature requires Telephony Integration.

Datatype: boolean

Required: No

AntiPermissions.Forward Calls to
Toll-Free Numbers

Sets whether to revoke permission to forward
incoming calls to phone numbers in toll-free
calling areas. This feature requires Telephony
Integration.

Datatype: boolean

Required: No

AntiPermissions.Forward Calls to
Toll Numbers

Sets whether to revoke permission to forward
incoming calls to phone numbers that are not
in toll-free calling areas. This feature requires
Telephony Integration.

Datatype: boolean

Required: No

AntiPermissions.Initiate
Broadcasts

Sets whether to revoke permission to broadcast
to all users in a group at the same time.

Datatype: boolean

Required: No

AntiPermissions.Initiate
Broadcasts to Everyone

Sets whether to revoke permission to broadcast
to all users in the Everyone group for your site.

Datatype: boolean

Required: No

AntiPermissions.Initiate Urgent
Broadcasts

Sets whether to revoke permission to broadcast
an urgent call to every member in a group at
the same time.

Datatype: boolean

Required: No

 Group Properties

102 ··· Vocera Administration Interface Guide

Key Description

AntiPermissions.Place Urgent
Calls

Sets whether to revoke permission to place
an urgent call or initiate an urgent three-way
conference call.

Datatype: boolean

Required: No

AntiPermissions.Call Users at
Other Sites

Sets whether to revoke permission to contact a
user whose home site or current site is different
from the home site or current site of the caller.

Datatype: boolean

Required: No

AntiPermissions.Join Conference Sets whether to revoke permission to enter or
leave a conference.

To prevent a user from conferencing, revoke
the Join Conference permission and use the
Administration Console to remove the user from
a conference.

Datatype: boolean

Required: No

AntiPermissions.Send Messages
To Everyone

Sets whether to revoke permission to send a
message to all users in the Everyone group for
your site.

Datatype: boolean

Required: No

AntiPermissions.Have Toll-Free
Pager Number

Sets whether to revoke permission to have a
pager number that is in a toll-free calling area.
This feature requires Telephony Integration.

Datatype: boolean

Required: No

AntiPermissions.Have Toll Pager
Number

Sets whether to revoke permission to have a
pager number that is in a toll calling area. This
feature requires Telephony Integration.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 103

Key Description

AntiPermissions.Require
Authentication to Log In

Sets whether to revoke permission that would
require group members to recite a series of
random digits when they log in. If true,
members can log in without authentication.

Datatype: boolean

Required: No

AntiPermissions.Require
Authentication to Play Messages

Sets whether to revoke permission that would
require group members to recite a series of
random digits when they play messages. If the
voice does not match the recorded voiceprint,
users cannot play messages. If true, members
can play messages without authentication.

Datatype: boolean

Required: No

AntiPermissions.Record your
Voiceprint

Sets whether to revoke permission for group
members to record their voiceprint. This
permission is effective only if the Voice Prints
Enabled system property is set to true.

Datatype: boolean

Required: No

AntiPermissions.Erase your
Voiceprint

Sets whether to revoke permission for group
members to erase their previously-recorded
voiceprints. This permission is effective only if
the Voice Prints Enabled system property is set
to true.

Datatype: boolean

Required: No

AntiPermissions.Erase Voiceprint
of Another User

Sets whether to revoke permission to erase the
voiceprint of another user. This permission is
effective only if the Voice Prints Enabled system
property is set to true.

Datatype: boolean

Required: No

 Group Properties

104 ··· Vocera Administration Interface Guide

Key Description

AntiPermissions.Locate Users or
Group Members

Sets whether to revoke permission to locate
other users or group members. This feature
is useful only if location names have been
defined and access points have been assigned
to locations.

Datatype: boolean

Required: No

AntiPermissions.Have VIP Status Sets whether to revoke permission to complete
a call even when users are blocking calls or have
placed their badges in Do Not Disturb mode.

Datatype: boolean

Required: No

AntiPermissions.Block and Accept
Calls

Sets whether to revoke permission to issue the
Block and Accept voice commands to perform
selective call screening.

This permission does not affect the ability to
block calls through the User Console.

Datatype: boolean

Required: No

AntiPermissions.Record
Utterances

Sets whether to revoke permission to record
utterances during Genie interactions.

Datatype: boolean

Required: No

AntiPermissions.Monitor Users
from Administration Console

Sets whether to revoke the permission to
view information about logged-in group
members and their badges in the Administration
Console. This VAI permission is equivalent to
the View Users And Groups permission in the
Administration Console.

Datatype: boolean

Required: No

AntiPermissions.Add/Edit/Delete
Users

Sets whether to revoke permission to maintain
the Vocera database by adding, editing, and
deleting all features in a user profile, such as
alternate spoken names, group membership,
and so forth.

Datatype: boolean

Required: No

Group Properties

Property Reference ··· 105

Key Description

AntiPermissions.Add/Edit/Delete
Temporary Users

Sets whether to revoke permission to maintain
the Vocera database by adding, editing, and
deleting all features of the profiles of temporary
users.

Datatype: boolean

Required: No

AntiPermissions.Edit Users Sets whether to revoke permission to maintain
the Vocera database by editing existing user
profiles.

Datatype: boolean

Required: No

AntiPermissions.Add/Edit/Delete
Address Book Entries

Sets whether to revoke permission to maintain
the Vocera database by adding, editing, and
deleting address book entries. Also revokes
permission to record a spoken name for address
book entries.

Datatype: boolean

Required: No

AntiPermissions.Access Genie
from Phone Using Caller ID

Sets whether to revoke permission to call the
Vocera hunt number from a phone and access
the Genie using a caller ID associated with the
phone.

Datatype: boolean

Required: No

Since: 4.1

AntiPermissions.Perform System
Device Management

Sets whether to revoke permission to add, edit,
and delete devices and view the Status Monitor.

Datatype: boolean

Required: No

Since: 4.1

 Location Properties

106 ··· Vocera Administration Interface Guide

Location Properties

The following table lists the properties of a Location. Locations are names of

places to which you assign one or more access points.

Since: 4.0

Table 22. Location properties

Key Description

Name Location name. The name must start with a
letter or digit. It must contain only letters, digits,
spaces, apostrophes ('), underscores (_), or
dashes (-). No other characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Spoken Name Alternate spoken name for the location, if
needed. The alternate spoken name gives the
server an additional field to check, increasing
the chances that a location name will be
understood by the Genie.

Datatype: String

Maximum Length: 50 characters

Required: No

Description Description of the location. Example: H Q
Lobby

Datatype: String

Maximum Length: 100 characters

Required: No

Site Physical site of the access point.

If your organization has multiple sites connected
to the same Vocera server, specify the site that
represents the access point's physical location. If
your organization does not have multiple sites,
accept the default Global site.

Datatype: Site object, or a string representing
the site's internal name

Required: No

Location Properties

Property Reference ··· 107

Key Description

Access Points Property set containing access points associated
with the location.

Datatype: IndexedPropertySet

Required: No

Access Points.* Represents each access point assigned to the
location. To enter an access point, type its MAC
address (12 hexadecimal characters).

Datatype: String

Maximum Length: 12 characters

Required: No

Neighbors Property set containing neighboring locations.

Datatype: IndexedPropertySet

Required: No

Neighbors.* Represents each neighboring location.

Datatype: Location object, or the internal
name of the location of a neighboring access
point

Required: No

 Site Properties

108 ··· Vocera Administration Interface Guide

Site Properties

The following table lists the properties of a Site. In Vocera, a site is a distinct

physical location that shares a centralized Vocera server with one or more other

physical locations.

Since: 4.0

Table 23. Site properties

Key Description

Name Name of the site. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Note: If you change the name of a site that has
a Telephony server associated with it, you must
set the value of the VOCERA_SITE environment
variable on the Telephony server machine to the
name of the new site.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Spoken Name Alternate spoken name of the site. For example,
if users commonly refer to a site by a nickname
or an acronym, enter that variation here.

Datatype: String

Maximum Length: 50 characters

Required: No

Description Description of the site. Example: Intensive Care
Unit

Datatype: String

Maximum Length: 100 characters

Required: No

Site Properties

Property Reference ··· 109

Key Description

Cost Center The site's cost center ID, which enables Vocera
to track system usage by site and potentially
allows an organization to charge sites for
relative usage.

Datatype: String

Maximum Length: 100 characters

Required: No

Time Zone The site's time zone. Enter a Windows Time
Zone string (such as "Etc/GMT+8", "America/
Los_Angeles", and "PST8PDT"), or "" (empty
string) to use the time zone of the Vocera
server.

Datatype: String

Required: No

Panic Group The group that receives emergency broadcasts
for this site.

Datatype: Group

Required: No

Since: 4.3

Inhibit Panic Chime If true, emergency broadcasts are started
without an opening chime.

Datatype: boolean

Required: No

Since: 4.3

Telephony Info Property set containing telephony information
for this site.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Telephony Enabled If true, telephony features are enabled for the
site.

Datatype: boolean

Required: No

Telephony Info.Telephony
Interface Type

Type of telephony interface. Enter IP,
Digital, or Analog.

Datatype: String

Required: No

 Site Properties

110 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Telephony # of
Lines

Number of telephone lines.

Datatype: int

Required: Yes (if telephony is enabled for the
site)

Telephony Info.Telephony Protocol Signaling protocol that your PBX uses at the
network layer.

For IP PBX integration, enter the following
value: SIP Version 2.0.

For Digital PBX integration, enter one of the
following values: ISDN PRI, EURO ISDN
PRI, or Wink Start.

DO NOT update this property if Telephony
Interface Type = Analog.

Datatype: String

Required: No

Telephony Info.Telephony ISDN
Protocol

ISDN protocol used by your PBX. Enter one of
the following values: NI2, DMS, 5ESS, 4ESS,
NT1, CTR4, QTE, NE1, or QNT.

Datatype: String

Required: No

Telephony Info.Telephony Framing Framing that your PBX uses at the physical layer.
Enter one of the following values: ESF, D4, or
CEPT1.

Update this property only if Telephony Interface
Type = Digital.

Datatype: String

Required: No

Telephony Info.Telephony Line
Code

Line code that your PBX uses at the physical
layer. Enter one of the following values: B8ZS,
AMI, or HDB3.

Update this property only if Telephony Interface
Type = Digital.

Datatype: String

Required: No

Site Properties

Property Reference ··· 111

Key Description

Telephony Info.Area Code Area code of the region in which the Vocera
server is installed.

Datatype: String

Maximum Length: 10 characters

Required: Yes (if telephony is enabled for the
site)

Telephony Info.Local Access Sequence of numbers you use to get an outside
line. For example, a PBX might require you to
dial a 0 or a 9 or an 8 to get an outside line.

By default, Vocera prepends this access code to
any number within the local area code.

Datatype: String

Maximum Length: 10 characters

Required: No

Telephony Info.Long Distance
Access

Sequence of numbers you enter before placing
a long distance call. For example, a PBX system
might require you to dial a 9 to get an outside
line and then dial a 1 before a long-distance
telephone number. In this situation, enter 91.

By default, Vocera prepends this access code to
any number that includes an area code that is
not the local area code.

Datatype: String

Maximum Length: 10 characters

Required: No

Telephony Info.System Phone
Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system. To
use this number with numeric pagers, enter an
asterisk after the last digit of the phone number.

Datatype: String

Maximum Length: 75 characters

Required: No

 Site Properties

112 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Direct Access
Phone Number

Area code and phone number of the DID line
you set up for specially licensed user access to
the Vocera system. If you have not obtained
Vocera Access Anywhere user licenses or you
are not using ISDN or SIP signaling protocol, this
property should not be updated.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.1

Telephony Info.Voice Mail Access Sequence of numbers you enter to access the
company's voice mail system.

A typical entry includes X, then the sequence
of digits that you dial to get into the voicemail
system from an internal phone, and possibly
special dialing characters such as the * or # to
indicate the end of the sequence.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.Seven Digit Dialing If true, the area code is omitted from the
dialing sequence for a local call.

Datatype: boolean

Required: No

Telephony Info.PIN Setup Template for adding a PIN to a dialing sequence
for long distance calls. A PIN template can
include digits, special characters, and PIN
macros.

Datatype: String

Maximum Length: 75 characters

Required: No

Site Properties

Property Reference ··· 113

Key Description

Telephony Info.Default PIN The default PIN for long distance calls for the
site.

If a telephony PIN is not specified in the user's
profile and the user does not belong to a
department group that has a PIN, then the site
PIN is used.

Datatype: String

Maximum Length: 75 characters

Required: No

Telephony Info.Telephony
Extension Length

Specify the number of digits in an extension, or
0 (zero) to allow variable length extensions.

Datatype: int

Required: No

Telephony Info.Access Code Info By default, numbers in the local area code use
the Default Local Access Code and all others use
the Default Long-Distance Access Code. This
property set contains telephone numbers that
are exceptions to the access code policy. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet

Required: No

Telephony Info.Access Code
Info.*

Represents each defined access code exception
in the property set.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Access Code
Info.*.Number Range

KeyedPropertySet that defines the number
range for an access code exception.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Access Code
Info.*.Number Range.Area Code

Area code for which the exception is defined.

Datatype: String

Maximum Length: 10 characters

Required: No

 Site Properties

114 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Access Code
Info.*.Number Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

Telephony Info.Access Code
Info.*.Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

Telephony Info.Access Code
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.Access Code
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.Access Code
Info.*.Access Code

Access code that the specified area code
requires.

Datatype: String

Maximum Length: 10 characters

Required: Yes (for each access code exception)

Telephony Info.Toll Info By default, numbers in the local area code are
considered toll-free, and others are considered
to require toll-call permissions. This property set
contains telephone numbers that are exceptions
to the toll-call policy.

Datatype: IndexedPropertySet

Required: No

Site Properties

Property Reference ··· 115

Key Description

Telephony Info.Toll Info.* Represents each defined toll info exception.
Each keyed set specifies an area code and
phone numbers that can be called even by users
who do not have toll-call permissions granted.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Toll Info.*.Number
Range

Property set that defines the number range for a
toll info exception.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Toll Info.*.Number
Range.Area Code

Area code for which the exception is defined.

Datatype: String

Maximum Length: 10 characters

Required: No

Telephony Info.Toll Info.*.Number
Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

Telephony Info.Toll Info.*.Number
Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

Telephony Info.Toll Info.*.Number
Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.Toll Info.*.Number
Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

 Site Properties

116 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Toll Info.*.Toll Free If true, the area code is toll free.

Datatype: boolean

Required: No

Telephony Info.Paging Info Specifies properties for interacting with pagers.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Paging Info.Pager
Number Length

Specify the number of digits in a pager number,
or 0 (zero) to allow variable length numbers.

Datatype: int

Required: No

Telephony Info.Paging
Info.Outside Page Setup

Template that determines how Vocera formats
the string passed to a pager outside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String

Required: No

Telephony Info.Paging Info.Inside
Page Setup

Template that determines how Vocera formats
the string passed to a pager inside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String

Required: No

Telephony Info.Paging
Info.Outside Page Setup for DialIn

Template that determines how Vocera formats
the string passed to an outside pager by a
person calling into the Vocera hunt group or
DID number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String

Required: No

Site Properties

Property Reference ··· 117

Key Description

Telephony Info.Paging Info.Inside
Page Setup for DialIn

Template that determines how Vocera formats
the string passed to an inside pager by a person
calling into the Vocera hunt group or DID
number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String

Required: No

Telephony Info.DID Info Property set containing direct inward dialing
(DID) information.

Datatype: IndexedPropertySet

Required: No

Telephony Info.DID Info.* Represents each defined range of direct inward
dialing (DID) numbers. Each keyed set specifies
a prefix and the range of phone numbers to use
for direct inward dialing.

Datatype: KeyedPropertySet

Required: No

Telephony Info.DID Info.*.Number
Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet

Required: No

Telephony Info.DID Info.*.Number
Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

Telephony Info.DID Info.*.Number
Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

 Site Properties

118 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.DID Info.*.Number
Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.DID Info.*.Number
Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Telephony Info.DID Info.*.Prefix Area code and prefix assigned to the range. For
example, if the local area code of the PBX is
408, and the corporate prefix for all extensions
is 790, you typically enter (408)-790. In
some situations, your PBX administrator may
assign a different prefix for you to use.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Telephony Info.Dynamic Phone
Info

Property set that specifies a range of dynamic
phone extensions. This allows you to configure
Vocera to supply telephone extensions on
demand to users who need them.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Dynamic Phone
Info.Enabled

If true, dynamic extensions are enabled.

Datatype: boolean

Required: No

Telephony Info.Dynamic Phone
Info.First

Specifies the first dynamic extension in the
range.

Datatype: String

Maximum Length: 7 characters

Required: No

Site Properties

Property Reference ··· 119

Key Description

Telephony Info.Dynamic Phone
Info.Last

Specifies the last dynamic extension in the
range. The Last value must be greater than the
First value.

Datatype: String

Maximum Length: 7 characters

Required: No

Telephony Info.Dynamic Phone
Info.Lifetime

Specifies the lifetime, in days or hours, of the
assignment of dynamic extensions. Enter 0
(zero) to make the extensions permanent.

Datatype: int

Required: No

Telephony Info.Dynamic Phone
Info.Hours

Specifies whether the lifetime of dynamic
extensions is measured in hours (true) or days
(false).

Datatype: boolean

Required: No

Since: 4.1

Telephony Info.Dynamic Phone
Info.Last Allocated

The last allocated dynamic extension. Cannot
be updated.

Datatype: String

Telephony Info.Shared Server Info Property set that contains information needed
to allow multiple sites to share a Telephony
server.

Datatype: IndexedPropertySet

Required: No

Telephony Info.Shared Server
Info.*

Represents each defined site that shares this
Telephony server. Each keyed set specifies the
site, hunt group number, and reserved range of
lines for incoming calls.

Datatype: KeyedPropertySet

Required: No

Telephony Info.Shared Server
Info.*.Site

Principal site for which Telephony is enabled.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

 Site Properties

120 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Shared Server
Info.*.System Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system.

Datatype: String

Maximum Length: 75 characters

Telephony Info.Shared Server
Info.*.First Reserved Line No

First of the reserved lines for incoming calls.

Datatype: String

Telephony Info.Shared Server
Info.*.Reserved Line Count

Number of reserved lines for incoming calls.

Datatype: int

Telephony Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls
through the tie line to the selected site that
is sharing the principal's telephony server.
Alternatively, this field could also be used to
specify a prefix for Direct Inward Dialing (DID)
numbers at the selected site.

Datatype: String

Since: 4.1

Telephony Info.Call Signaling
Address

The IP address of your IP PBX or VoIP gateway.
By default, port 5060 is used. If you need to
change the port, enter the call signaling address
in the form IP_Address:Port.

Datatype: String

Maximum Length: 75 characters

Since: 4.3

Telephony Info.Cisco Info Property set containing default Cisco integration
properties.

Datatype: KeyedPropertySet

Required: No

Since: 4.3

Telephony Info.Cisco Info.Enabled Datatype: boolen

Required: No

Since: 4.3

Telephony Info.Cisco
Info.Extension Mobility Enabled

Datatype: boolean

Required: No

Since: 4.3

Site Properties

Property Reference ··· 121

Key Description

Telephony Info.Cisco Info.Phone The voice access number for CUCM. This
number should match the route pattern/number
for the Vocera SIP trunk. You can find route
patterns in CUCM Console by choosing Call
Routing > Route/Hunt > Route Pattern.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.3

Telephony Info.Cisco Info.First
Line

The first phone line used for the internal range
of Vocera lines.

Datatype: String

Maximum Length: 7 characters

Required: No

Since: 4.3

Telephony Info.Cisco Info.Last
Line

The last phone line used for the internal range
of Vocera lines.

Datatype: String

Maximum Length: 7 characters

Required: No

Since: 4.3

Telephony Info.Cisco Info.IP
Address

The IP address of the CUCM in dotted-decimal
notation (for example, 192.168.15.10).

Datatype: String

Maximum Length: 50 characters

Required: No

Since: 4.3

Telephony Info.Cisco Info.User
Name

The Vocera application user ID for CUCM.

Datatype: String

Maximum Length: 50 characters

Required: No

Since: 4.3

 Site Properties

122 ··· Vocera Administration Interface Guide

Key Description

Telephony Info.Cisco
Info.Password

The Vocera application user ID for CUCM. Use
only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administration Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: No

Since: 4.3

User Properties

Property Reference ··· 123

User Properties

The following table lists the properties of a User.

Since: 4.0

Table 24. User properties

Key Description

User ID Vocera user ID. Enter an ID that is not already
assigned to another user on the system, being
careful to choose a name that you and the user
can easily remember. The user ID is not case-
sensitive.

The User ID must start with a letter or digit. It
must contain only letters, digits, spaces, periods
('), underscores (_), or dashes (-). No other
characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Password The user's Vocera password. The password is
case-sensitive. Use this property to create or
update the user's password.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: No

 User Properties

124 ··· Vocera Administration Interface Guide

Key Description

Phone Password Password used to authenticate the user when
accessing the Genie from a phone.

Important: Your application should restrict
the phone password to be between 5 and 15
characters consisting of letters or numbers.
Special characters are not allowed. VAI itself
does not restrict the length of passwords or
prevent you from entering a password with
invalid characters.

Datatype: String

Required: No

Since: 4.1

Last Name The user's last name. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

First Name The user's first name. The name must start with
a letter or digit. It must contain only letters,
digits, spaces, apostrophes ('), underscores (_),
or dashes (-). No other characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Alt Spoken Names Property set containing up to three variations of
the spoken name of the user.

Datatype: IndexedPropertySet

Required: No

Alt Spoken Names.* Represents each Alternate Spoken Name in the
property set.

Datatype: String

Maximum Length: 50 characters

Required: No

User Properties

Property Reference ··· 125

Key Description

Ident Phrase An identifying phrase that distinguishes this
user from others with the same name. Example:
Rita Clark in Staffing

Datatype: String

Maximum Length: 100 characters

Required: No

Email Address An optional email address, which allows users
to send voice messages as an email attachment.
Example: jdoe@vocera.com

Datatype: String

Maximum Length: 40 characters

Required: No

Desk Phone The desk phone number or extension for the
user.

Datatype: String

Maximum Length: 75 characters

Required: No

Cell Phone The user's cell phone number. You can enter
digits, special dialing characters, or special
dialing macros.

Datatype: String

Maximum Length: 75 characters

Required: No

Home Phone The user's home phone number. You can enter
digits, special dialing characters, or special
dialing macros.

Datatype: String

Maximum Length: 75 characters

Required: No

Pager Phone The user's pager number. You can enter digits,
special dialing characters, or special dialing
macros.

Datatype: String

Maximum Length: 75 characters

Required: No

 User Properties

126 ··· Vocera Administration Interface Guide

Key Description

Dynamic Phone The user's dynamically assigned phone
extension. Cannot be updated.

Datatype: String

Vocera Phone The user's Vocera phone extension.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.1 SP4

Conference Group The current conference group for the user. A
user can have only one conference group at a
time. You must specify a valid group name.

Datatype: String

Employee ID Optional unique value that identifies a Vocera
user.

Datatype: String

Maximum Length: 50 characters

Required: No

Cost Center The user's cost center ID, which enables Vocera
to track system usage by site and potentially
allows an organization to charge sites for
relative usage.

Datatype: String

Maximum Length: 100 characters

Required: No

PIN Specify a value of the PIN for long distance
calls. A telephony PIN allows an organization to
authorize or account for telephone usage and
to distribute telephone costs among different
users, departments, or sites. A PIN can include
digits, special characters, and PIN macros.

Datatype: String

Maximum Length: 75 characters

Required: No

User Properties

Property Reference ··· 127

Key Description

Site The user's home site. If you don't specify a site,
the Global site is used.

Datatype: Site object, or a string representing
the site's internal name.

Required: No

Expire Time If the user is a temporary user, this property
specifies when the profile expires. Enter a date
with the format mm/dd/yyyy. The date must be
later than the current date.

Datatype: String

Required: No

Call Blocking Defines the default call blocking behavior for
any users or groups not specified in the Block
List or Accept List. Enter one of the following
values: Accept or Block.

Datatype: String

Required: No

Block List Property set containing users or groups whose
calls are blocked.

Datatype: IndexedPropertySet

Required: No

Block List.* Represents each user or group whose calls are
blocked.

Datatype: Entity (User or Group)

Required: No

Accept List Property set containing users or groups whose
calls are accepted (not blocked).

Datatype: IndexedPropertySet

Required: No

Accept List.* Represents each user or group whose calls are
accepted (not blocked).

Datatype: Entity (User or Group)

Required: No

 User Properties

128 ··· Vocera Administration Interface Guide

Key Description

Buddies Property set containing the user's buddies. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet

Required: No

Buddies.* Represents each defined buddy (personal
contact) in the property set.

Datatype: KeyedPropertySet

Required: No

Buddies.*.Name Contact, User, or Group object that identifies
the buddy.

Datatype: Entity object (Contact, User, or
Group)

Required: Yes

Buddies.*.Nick Name Name used to call the buddy. The name must
start with a letter or digit. It must contain
only letters, digits, spaces, apostrophes
('), underscores (_), or dashes (-). No other
characters are allowed.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Buddies.*.VIP If true, the buddy has VIP status and can call
the user even when the user is blocking calls or
in DND mode.

Datatype: boolean

Required: No

Buddies.*.RingTone One of the available ring tones, for example,
Ring-Tone-01, Ring-Tone-02, and so
on. When the buddy calls the user, the specified
ring tone is used.

Datatype: String

Required: No

User Properties

Property Reference ··· 129

Key Description

Verbal Call Announcement If true, the caller's name will be announced
after the ring tone.

Datatype: boolean

Required: No

Verbal Genie Greeting If true, the user will hear a spoken greeting
("Vocera") after pressing the call button.

Datatype: boolean

Required: No

Tonal Genie Greeting If true, the user will hear a short tone after
pressing the call button.

Datatype: boolean

Required: No

Auto Answer If true, incoming calls are connected
immediately, without asking the user whether
he wants to take the call.

Datatype: boolean

Required: No

Auto Who Called If true, the user can press the Call button on
the badge to play an announcement of the
names of callers who unsuccessfully tried to
call since the last time the user pressed the Call
button, and who left messages.

Datatype: boolean

Required: No

Out Of Range Alert If true, the user will hear a warning tone
when the badge moves out of the range of the
wireless network.

Datatype: boolean

Required: No

Low Battery Alert If true, the badge will warn the user whenever
the battery needs to be recharged.

Datatype: boolean

Required: No

 User Properties

130 ··· Vocera Administration Interface Guide

Key Description

Auto Logout If true, the user will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean

Required: No

VMessage Alert If true, the user will hear an alert tone when
he receives a new voice message.

Datatype: boolean

Required: No

TMessage Alert If true, the user will hear an alert tone when
he receives a new text message.

Datatype: boolean

Required: No

Disable Alerts In DND If true, all alerts are suppressed when the
user's badge is in Do Not Disturb (DND) mode.

Datatype: boolean

Required: No

Play Older Messages First If true, messages are played in the order in
which they are received. Otherwise, messages
are played in reverse order (newest first).

Datatype: boolean

Required: No

Timestamp Played Messages If true, the user will hear the date and
time each message was sent when he plays
messages.

Datatype: boolean

Required: No

Fast Call Setup If true, a call is connected as soon as the
recipient accepts it. Otherwise, the Genie
always completes the call announcement before
connecting the call.

Datatype: boolean

Required: No

User Properties

Property Reference ··· 131

Key Description

VMessage Reminder If true, the user will hear a tone every 10
minutes until he retrieves new voice messages.

Datatype: boolean

Required: No

TMessage Reminder If true, the user will hear a tone every 10
minutes until he retrieves new text messages.

Datatype: boolean

Required: No

DND Reminder If true, the user will hear a tone every 10
minutes while his badge is in Do Not Disturb
(DND) mode.

Datatype: boolean

Required: No

Enable Pages If true, the user can receive numeric pages.
Otherwise, pages are disabled.

Datatype: boolean

Required: No

Announce Through Speaker If true, Vocera plays incoming call and
message announcements through the badge
speaker when a headset is plugged into the
user's badge. Otherwise, both announcements
and actual calls or messages are played through
the headset.

Datatype: boolean

Required: No

Press Button To Accept Call If true, the user is required to accept or reject
incoming calls by pressing the Call or DND/Hold
button. The user cannot say "Yes" and "No"
voice commands to accept and reject incoming
calls. This feature is useful in certain high-noise
environments.

Datatype: boolean

Required: No

Since: 4.1

 User Properties

132 ··· Vocera Administration Interface Guide

Key Description

Announce Group Calls If true, when the user receives a call made to
a group, the Genie will identify the group that
was called.

Datatype: boolean

Required: No

Since: 4.1

Block Voice Messages If true, Vocera suppresses notifications when
the user receives a message.

Datatype: boolean

Required: No

Since: 4.1

Ring Tone One of the available ring tones, for example,
Ring-Tone-01, Ring-Tone-02, and so
on. When the user receives a call on his badge,
the specified ring tone is used.

Datatype: String

Required: No

Genie Persona One of the available Genie names, for example,
Mark or Jean. The Genie is the voice that
prompts users when they interact with the
Vocera system.

Datatype: String

Required: No

Forwarding Sets whether and where incoming calls are
forwarded. Enter one of the following values:
None, Desk Phone, Cell Phone, Home
Phone, Voice Mail, Other Phone, or
Other User.

Datatype: String

Required: No

Forwarding Number Phone number used when Forwarding = Other
Phone.

Datatype: String

Maximum Length: 30 characters

Required: No

User Properties

Property Reference ··· 133

Key Description

Forwarding Name User or Group to forward to when Forwarding =
Other User.

Datatype: User or Group

Required: No

Forwarding When Specify when to forward calls. Enter one of the
following values: Never, All, Unanswered,
or Offline.

Datatype: String

Required: No

 System Properties

134 ··· Vocera Administration Interface Guide

System Properties

Vocera system properties are accessed from the VAI class. Use the VAI methods

getSystemProperties() and updateSystemProperties(), respectively,

to read and write these properties.

Since: 4.0

Table 25. System properties

Key Description

Product Major Version Vocera major version number. Example: given
a product version of 3.1, the product major
version is 3. Cannot be updated.

Datatype: String

Product Minor Version Vocera minor version number. Example: given
a product version of 3.1, the product minor
version is 1. Cannot be updated.

Datatype: String

Product Revision Vocera revision. Example: given a product
version of 3.1SP1, the product revision is SP1.
Given a product version of 3.1, the product
revision is 0. Cannot be updated.

Datatype: String

Time Last Update Time in milliseconds since 1/1/70 00:00 GMT
of the last update of a Vocera system property.
Cannot be updated.

Datatype: long

Self Register If true, users can add themselves to the
Vocera system through the User Console.

Datatype: boolean

Required: No

Badge Log In If true, voice commands that enable users
to log into and log out of badges are enabled.
Otherwise, users cannot share badges, and you
must specify each user's Badge ID.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 135

Key Description

Voice Prints Enabled If true, the voiceprints feature is enabled to
provide more secure authentication when users
log in or check messages.

Datatype: boolean

Required: No

Auto Record Voice Prints If true, the Vocera server automatically
prompts users to record their voiceprints the
next time they log in. Users are prompted only if
they have not yet recorded a voiceprint.

Datatype: boolean

Required: No

Admin Password Password for the Administrator user. Used only
for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: Yes

Dictation Enabled If true, dictation features are enabled for
the Vocera system. Dictation feaures require a
special license. Separate configuration is also
required.

Datatype: boolean

Required: No

Since: 4.1

Block all VMI Messages in DND If true, blocks all VMI messages—even urgent
messages—for users in Do Not Disturb mode.

Datatype: boolean

Required: No

Since: 4.3

 System Properties

136 ··· Vocera Administration Interface Guide

Key Description

Block non-urgent VMI Messages
in DND

If true, blocks non-urgent VMI messages for
users in Do Not Disturb mode.

Datatype: boolean

Required: No

Since: 4.3

VMP Enabled If true, Vocera Messaging Platform (VMP)
integration is enabled.

Datatype: boolean

Required: No

Since: 4.3

Company Name of your company or organization. This
value appears in reports and logs.

Datatype: String

Maximum Length: 100 characters

Required: No

Days To Keep Messages Number of days to retain messages on the
system. The default is 7 days (one week).

Datatype: int

Required: No

Time To Sweep Time of day, in milliseconds from midnight,
when messages are deleted from the Vocera
Server.

Datatype: long

Required: No

Locale Identifies the server's locale. Examples: AU, CA,
GB, NZ, and US.

Datatype: String

Required: No

Override Info Property set that specifies which system settings
override the corresponding property in the
Vocera User Console. A value of true indicates
an override. The OverrideInfo.Override Opt list
specifies the actual property values.

Datatype: KeyedPropertySet

Required: No

System Properties

Property Reference ··· 137

Key Description

OverrideInfo.Verbal Call
Announcement

If true, override each user's Verbal Call
Announcement property.

Datatype: boolean

Required: No

OverrideInfo.Verbal Genie
Greeting

If true, override each user's Verbal Genie
Greeting property.

Datatype: boolean

Required: No

OverrideInfo.Tonal Genie Greeting If true, override each user's Tonal Genie
Greeting property.

Datatype: boolean

Required: No

OverrideInfo.Auto Answer If true, override each user's Auto Answer
property.

Datatype: boolean

Required: No

OverrideInfo.Auto Who Called If true, override each user's Auto Who Called
property.

Datatype: boolean

Required: No

OverrideInfo.Out Of Range Alert If true, override each user's Out Of Range
Alert property.

Datatype: boolean

Required: No

OverrideInfo.Low Battery Alert If true, override each user's Low Battery Alert
property.

Datatype: boolean

Required: No

OverrideInfo.Auto Logout If true, override each user's Auto Logout
property.

Datatype: boolean

Required: No

 System Properties

138 ··· Vocera Administration Interface Guide

Key Description

OverrideInfo.AP Tour If true, override each user's AP Tour property.

Datatype: boolean

Required: No

OverrideInfo.VMessage Alert If true, override each user's VMessage Alert
property.

Datatype: boolean

Required: No

OverrideInfo.TMessage Alert If true, override each user's TMessage Alert
property.

Datatype: boolean

Required: No

OverrideInfo.Disable Alerts In
DND

If true, override each user's Disable Alerts In
DND property.

Datatype: boolean

Required: No

OverrideInfo.Play Older Messages
First

If true, override each user's Play Older
Messages First property.

Datatype: boolean

Required: No

OverrideInfo.Timestamp Played
Messages

If true, override each user's Timestamp Played
Messages property.

Datatype: boolean

Required: No

OverrideInfo.Fast Call Setup If true, override each user's Fast Call Setup
property.

Datatype: boolean

Required: No

OverrideInfo.VMessage Reminder If true, override each user's VMessage
Reminder property.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 139

Key Description

OverrideInfo.TMessage Reminder If true, override each user's TMessage
Reminder property.

Datatype: boolean

Required: No

OverrideInfo.DND Reminder If true, override each user's DND Reminder
property.

Datatype: boolean

Required: No

OverrideInfo.Enable Pages If true, override each user's Enable Pages
property.

Datatype: boolean

Required: No

OverrideInfo.Announce Through
Speaker

If true, override each user's Announce
Through Speaker property.

Datatype: boolean

Required: No

OverrideInfo.Press Button To
Accept Call

If true, override each user's Press Button To
Accept Call property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Announce Group
Calls

If true, override each user's Announce Group
Calls property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Block Voice
Messages

If true, override each user's Block Voice
Messages property.

Datatype: boolean

Required: No

 System Properties

140 ··· Vocera Administration Interface Guide

Key Description

OverrideInfo.Enable Genie Access
From Phone

If true, override each user's Enable Genie
Access From Phone property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Ring Tone If true, override each user's Ring Tone
property.

Datatype: boolean

Required: No

OverrideInfo.Genie Persona If true, override each user's Genie Persona
property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Verbal
Call Announcement

Specifies the value of the overridden Verbal Call
Announcement property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Verbal
Genie Greeting

Specifies the value of the overridden Verbal
Genie Greeting property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Tonal
Genie Greeting

Specifies the value of the overridden Tonal
Genie Greeting property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Auto
Answer

Specifies the value of the overridden Auto
Answer property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Auto
Who Called

Specifies the value of the overridden Auto Who
Called property.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 141

Key Description

OverrideInfo.Override Opt Out Of
Range Alert

Specifies the value of the overridden Out Of
Range Alert property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Low
Battery Alert

Specifies the value of the overridden Low
Battery Alert property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Auto
Logout

Specifies the value of the overridden Auto
Logout property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt AP
Tour

Specifies the value of the overridden AP Tour
property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt
VMessage Alert

Specifies the value of the overridden VMessage
Alert property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt
TMessage Alert

Specifies the value of the overridden TMessage
Alert property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Disable
Alerts In DND

Specifies the value of the overridden Disable
Alerts In DND property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Play
Older Messages First

Specifies the value of the overridden Play Older
Messages First property.

Datatype: boolean

Required: No

 System Properties

142 ··· Vocera Administration Interface Guide

Key Description

OverrideInfo.Override Opt
Timestamp Played Messages

Specifies the value of the overridden Timestamp
Played Messages property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Fast
Call Setup

Specifies the value of the overridden Fast Call
Setup property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt
VMessage Reminder

Specifies the value of the overridden VMessage
Reminder property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt
TMessage Reminder

Specifies the value of the overridden TMessage
Reminder property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt DND
Reminder

Specifies the value of the overridden DND
Reminder property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Enable
Pages

Specifies the value of the overridden Enable
Pages property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt
Announce Through Speaker

Specifies the value of the overridden Announce
Through Speaker property.

Datatype: boolean

Required: No

OverrideInfo.Override Opt Press
Button To Accept Call

Specifies the value of the overridden Press
Button To Accept Call property.

Datatype: boolean

Required: No

Since: 4.1

System Properties

Property Reference ··· 143

Key Description

OverrideInfo.Override Opt
Announce Group Calls

Specifies the value of the overridden Announce
Group Calls property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Override Opt Block
Voice Messages

Specifies the value of the overridden Block Voice
Messages property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Override Opt Enable
Genie Access From Phone

Specifies the value of the overridden Enable
Genie Access From Phone property.

Datatype: boolean

Required: No

Since: 4.1

OverrideInfo.Override Opt Ring
Tone

Specifies the value of the overridden Ring Tone
property. Must be one of the available ring
tones, for example, Ring-Tone-01, Ring-
Tone-02, and so on. When the user receives
a call on his badge, the specified ring tone is
used.

Datatype: String

Required: No

OverrideInfo.Override Opt Genie
Persona

Specifies the value of the overridden Genie
Persona property. Must be one of the available
Genie names, for example, Mark or Jean. The
Genie is the voice that prompts users when they
interact with the Vocera system.

Datatype: String

Required: No

Mail Info Property set containing email properties.

Datatype: KeyedPropertySet

Required: No

 System Properties

144 ··· Vocera Administration Interface Guide

Key Description

Mail Info.Server Type Mail server type that matches the protocol
supported by your email server. Enter one of the
following values: pop3 or imap.

Datatype: String

Required: No

Mail Info.Host Name of the POP or IMAP server that
receives and stores your email. Example:
mail.yourcompany.com.

Datatype: String

Maximum Length: 60 characters

Required: No

Mail Info.User Name Address or ID of the Vocera system mailbox
that the IT administrator reserved for
email sent to Vocera badges (for example,
vocerabadge@yourcompany.com).

Datatype: String

Maximum Length: 50 characters

Required: No

Mail Info.Password Password the Vocera server must use to log in
to the Vocera system mailbox. Use only for
update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: No

Mail Info.SMTP Host Name of the server used for outgoing mail.
Example: mail.yourcompany.com.

Datatype: String

Maximum Length: 60 characters

Required: No

System Properties

Property Reference ··· 145

Key Description

Mail Info.SMTP User Name User name or address used to log into the
outgoing mail server.

Datatype: String

Maximum Length: 50 characters

Required: No

Mail Info.SMTP Password Password the Vocera server must use to log into
the outgoing mail server. Use only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: No

Mail Info.SMTP Authentication If true, the mail server requires its subscribers
to provide authentication when sending an
email message.

Datatype: boolean

Required: No

Mail Info.Mail Check Interval Time interval in seconds that the system waits
to check for mail.

Datatype: int

Required: No

Mail Info.Default Recipient Email address to receive warning messages that
the Vocera server can issue. The Vocera server
sends alert messages to this address to notify
the user of significant system events, such as
low disk space and cluster failovers.

Datatype: String

Maximum Length: 50 characters

Required: No

 System Properties

146 ··· Vocera Administration Interface Guide

Key Description

Mail Info.Domain Name Domain name used in email addresses at your
site. Entering a value for this field ensures that
anyone can reply to email sent from the badge.

Datatype: String

Maximum Length: 60 characters

Required: No

Backup Info Property set containing Vocera system backup
properties.

Datatype: KeyedPropertySet

Required: No

Backup Info.Auto Backup Enabled If true, automatic backups are enabled.

Datatype: boolean

Required: No

Backup Info.Auto Backup
Frequency

Frequency of automatic backups in days.

Datatype: int

Required: No

Backup Info.Auto Backup Time Time of day in milliseconds from midnight on
which to start the backup.

Datatype: long

Required: No

Backup Info.Max Backup Files Maximum number of backup files to save.

The maximum is the total number of all backup
files, regardless of whether they were created
automatically or manually. When you exceed
the maximum number of files, Vocera deletes
the oldest file and saves a new one.

Datatype: int

Required: Yes

Logging Info Property set containing Vocera system logging
properties.

Datatype: KeyedPropertySet

Required: No

System Properties

Property Reference ··· 147

Key Description

LoggingInfo.Auto Mail Enabled If true, the Vocera Server automatically emails
logs to specified recipients.

Datatype: boolean

Required: No

LoggingInfo.Auto Mail Only On
Restart

If true, the Vocera Server automatically emails
the most recently closed log file only when the
server restarts. Otherwise, the Vocera Server
automatically emails the most recently closed
log file immediately after the server opens a
new one; consequently, the system mails a log
file at least once a day.

Datatype: boolean

Required: No

LoggingInfo.Auto Mail Recipient
1

First email address for automatic log mailing.

Datatype: String

Maximum Length: 60 characters

Required: No

LoggingInfo.Auto Mail Recipient
2

Second email address for automatic log mailing.

Datatype: String

Maximum Length: 60 characters

Required: No

Department Info Property set containing speech recognition
options for departments.

Datatype: KeyedPropertySet

Required: No

Department Info.Rec First Name
and Department

If true, Vocera recognizes the first name of
a user as well as the user's department when
someone issues a voice command. Example:
Bill in Housekeeping.

Datatype: boolean

Required: No

 System Properties

148 ··· Vocera Administration Interface Guide

Key Description

Department Info.Rec Full Name
and Department

If true, Vocera recognizes the full name
(both first and last name) as well as the user's
department when someone issues a voice
command. Example: Jane Doe in Sales.

Datatype: boolean

Required: No

Freq Dept Info Property set containing frequently called
departments information.

Datatype: KeyedPropertySet

Required: No

Since: 4.3

Freq Dept Info.Frequent Dept
Preference Enabled

Indicates whether the use of frequently called
departments has been enabled.

Datatype: boolean

Required: No

Since: 4.3

Freq Dept Info.Frequent Dept
Adaptation Enabled

Indicates whether adaptation of frequently
called departments has been enabled. If
true, this property enables the gathering of
call history data to calculate probabilities for
frequently called departments.

Datatype: boolean

Required: No

Since: 4.3

Cluster Info Property set containing cluster information.

Datatype: KeyedPropertySet

Required: No

Cluster Info.Cluster Enabled If true, clustering is enabled.

Datatype: boolean

Required: No

Cluster Info.Cluster Members Property set containing cluster members.

Datatype: IndexedPropertySet

Required: No

System Properties

Property Reference ··· 149

Key Description

Cluster Info.Cluster Members.* The set of properties for each member of the
cluster.

Datatype: KeyedPropertySet

Required: No

Cluster Info.Cluster
Members.*.Host

Numeric IP address of the machine.

Datatype: String

Maximum Length: 15 characters

Required: No

Cluster Info.Cluster
Members.*.Description

A brief description of the cluster member to
help identify the machine.

Datatype: String

Maximum Length: 100 characters

Required: No

Report Server Info Property set containing Vocera Report Server
information.

Datatype: KeyedPropertySet

Required: No

Report Server Info.Report Server
IP Address

IP address of the Vocera Report Server.

Datatype: String

Maximum Length: 50 characters

Required: No

Device Info Property set containing device information.

Datatype: KeyedPropertySet

Required: No

Since: 4.1

Device Info.Status Choices Property set containing device status values.

Datatype: IndexedPropertySet

Required: No

Since: 4.1

 System Properties

150 ··· Vocera Administration Interface Guide

Key Description

Device Info.Status Choices.* Represents each device status value.

Datatype: String

Maximum Length: 50 characters

Required: No

Since: 4.1

Auto Logout Info Property set that defines whether users will be
automatically logged out and the badge will
be turned off when the badge is placed in a
charger.

Datatype: KeyedPropertySet

Required: No

Since: 4.1

Auto Logout Info.Auto Logout
Enabled

If true, users will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean

Required: No

Since: 4.1

Auto Logout Info.Auto Logout
Period

Number of minutes after which an inactive
badge user is logged off the Vocera system.
When the value is 0 (zero), this feature is
disabled.

Datatype: int

Required: No

Since: 4.1

Application Info Property set that allows administrators to
designate information about VAI applications.

Datatype: KeyedPropertySet

Required: No

Since: 4.1 SP3

Application Info.Application
Server IP Address

IP address(es) of computers that are allowed to
run VAI applications.

Datatype: String

Maximum Length: 80 characters

Required: No

Since: 4.1 SP3

System Properties

Property Reference ··· 151

Key Description

Handoff Info Property set that allows administrators to
integrate Vocera Server with Vocera Care
Transition (formerly Optivox), which allows you
to standardize, manage, and monitor hand-offs
in healthcare.

Datatype: KeyedPropertySet

Required: No

Since: 4.3

Handoff Info.Handoff Enabled If true, Care Transition integration with Vocera
Server is enabled.

Datatype: boolean

Required: No

Since: 4.3

Handoff Info.Handoff Customer
ID

Care Transition customer ID.

Datatype: String

Required: No

Since: 4.3

Handoff Info.Handoff Server
Phone

The phone number of the Care Transition IVR
system.

Datatype: String

Required: No

Since: 4.3

Handoff Info.Handoff Server IP
Addr

The IP address of the Care Transition server.

Datatype: String

Required: No

Since: 4.3

Default User Property set containing default user properties
for newly-created users.

Datatype: KeyedPropertySet

Required: No

 System Properties

152 ··· Vocera Administration Interface Guide

Key Description

Default User.Password Default password for new users. The password
is case-sensitive. Used only for update.

Important: Your application should restrict
passwords to be between 5 and 15 characters.
Otherwise, passwords that you set in your VAI
application may not be valid for the Vocera
Administrator Console and User Console. VAI
itself does not restrict the length of passwords.

Datatype: String

Required: No

Default User.Verbal Call
Announcement

If true, users will hear the caller's name
announced after the ring tone.

Datatype: boolean

Required: No

Default User.Verbal Genie
Greeting

If true, users will hear a spoken greeting
("Vocera") after pressing the call button.

Datatype: boolean

Required: No

Default User.Tonal Genie Greeting If true, users will hear a short tone after
pressing the call button.

Datatype: boolean

Required: No

Default User.Auto Answer If true, incoming calls are connected
immediately, without asking users whether they
want to take the call.

Datatype: boolean

Required: No

Default User.Auto Who Called If true, users can press the Call button on the
badge to play an announcement of the names
of callers who unsuccessfully tried to call since
the last time the user pressed the Call button,
and who left messages.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 153

Key Description

Default User.Out Of Range Alert If true, users will hear a warning tone when
the badge moves out of the range of the
wireless network.

Datatype: boolean

Required: No

Default User.Low Battery Alert If true, the badge will warn users whenever
the battery needs to be recharged.

Datatype: boolean

Required: No

Default User.Auto Logout If true, users will be automatically logged
out and the badge will be turned off when the
badge is placed in a charger.

Datatype: boolean

Required: No

Default User.VMessage Alert If true, users will hear an alert tone when they
receive a new voice message.

Datatype: boolean

Required: No

Default User.TMessage Alert If true, users will hear an alert tone when they
receive a new text message.

Datatype: boolean

Required: No

Default User.Disable Alerts In DND If true, all alerts are suppressed when a user's
badge is in Do Not Disturb (DND) mode.

Datatype: boolean

Required: No

Default User.Play Older Messages
First

If true, messages are played in the order in
which they are received. Otherwise, messages
are played in reverse order (newest first).

Datatype: boolean

Required: No

Default User.Timestamp Played
Messages

If true, users will hear the date and time each
message was sent when they play messages.

Datatype: boolean

Required: No

 System Properties

154 ··· Vocera Administration Interface Guide

Key Description

Default User.Fast Call Setup If true, a call is connected as soon as the
recipient accepts it. Otherwise, the Genie
always completes the call announcement before
connecting the call.

Datatype: boolean

Required: No

Default User.VMessage Reminder If true, users will hear a tone every 10 minutes
until they retrieve new voice messages.

Datatype: boolean

Required: No

Default User.TMessage Reminder If true, users will hear a tone every 10 minutes
until they retrieve new text messages.

Datatype: boolean

Required: No

Default User.DND Reminder If true, users will hear a tone every 10 minutes
while their badges are in Do Not Disturb (DND)
mode.

Datatype: boolean

Required: No

Default User.Enable Pages If true, users can receive numeric pages.
Otherwise, pages are disabled for new users.

Datatype: boolean

Required: No

Default User.Announce Through
Speaker

If true, Vocera plays incoming call and
message announcements through the badge
speaker when a headset is plugged into the
user's badge. Otherwise, both announcements
and actual calls or messages are played through
the headset.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 155

Key Description

Default User.Block Voice
Messages

If true, Vocera suppresses notifications when
a user receives a message. However, the user
may still hear a voice message alert tone (if the
Voice Message Alert option is selected), and a
telephone icon appears on the badge display
when the user has unplayed voice messages.

Datatype: boolean

Required: No

Since: 4.1

Default User.Enable Genie Access
From Phone

If true, it enables the ability to access the
Genie from a telephone to perform Vocera
functions other than basic calling.

The number of users that can use the phone
access feature is controlled by your Vocera
license. Only users that have been enabled
to use the phone access feature can take
advantage of this feature.

Datatype: boolean

Required: No

Since: 4.1

Default User.Ring Tone One of the available ring tones, for example,
Ring-Tone-01, Ring-Tone-02, and so
on. When a user receives a call on his badge,
the specified ring tone is used.

Datatype: String

Required: No

Default User.Genie Persona One of the available Genie names, for example,
Mark or Jean. The Genie is the voice that
prompts users when they interact with the
Vocera system.

Datatype: String

Required: No

Default Site Property set containing default site properties.

Datatype: KeyedPropertySet

Required: No

 System Properties

156 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony Info Property set containing default telephony
properties.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony
Info.Telephony Enabled

If true, telephony features are enabled for the
site.

Datatype: boolean

Required: No

Default Site.Telephony
Info.Telephony Interface Type

Type of telephony interface. Enter IP,
Digital, or Analog.

Datatype: String

Required: No

Default Site.Telephony
Info.Telephony # of Lines

Number of telephone lines.

Datatype: int

Required: Yes (if telephony is enabled for the
site)

Default Site.Telephony
Info.Telephony Protocol

Signaling protocol that your PBX uses at the
network layer.

For IP PBX integration, enter the following
value: SIP Version 2.0.

For Digital PBX integration, enter one of the
following values: ISDN PRI, EURO ISDN
PRI, or Wink Start.

DO NOT update this property if Telephony
Interface Type = Analog.

Datatype: String

Required: No

Default Site.Telephony
Info.Telephony ISDN Protocol

ISDN protocol used by your PBX. Enter one of
the following values: NI2, DMS, 5ESS, 4ESS,
NT1, CTR4, QTE, NE1, or QNT.

Datatype: String

Required: No

System Properties

Property Reference ··· 157

Key Description

Default Site.Telephony
Info.Telephony Framing

Framing that your PBX uses at the physical layer.
Enter one of the following values: ESF, D4, or
CEPT1.

Update this property only if Telephony Interface
Type = Digital.

Datatype: String

Required: No

Default Site.Telephony
Info.Telephony Line Code

Line code that your PBX uses at the physical
layer. Enter one of the following values: B8ZS,
AMI, or HDB3.

Update this property only if Telephony Interface
Type = Digital.

Datatype: String

Required: No

Default Site.Telephony Info.Area
Code

Area code of the region in which the Vocera
server is installed.

Datatype: String

Maximum Length: 10 characters

Required: Yes (if telephony is enabled for the
site)

Default Site.Telephony Info.Local
Access

Sequence of numbers you use to get an outside
line. For example, a PBX might require you to
dial a 0 or a 9 or an 8 to get an outside line.

By default, Vocera prepends this access code to
any number within the local area code.

Datatype: String

Maximum Length: 10 characters

Required: No

 System Properties

158 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony Info.Long
Distance Access

Sequence of numbers you enter before placing
a long distance call. For example, a PBX system
might require you to dial a 9 to get an outside
line and then dial a 1 before a long-distance
telephone number. In this situation, enter 91.

By default, Vocera prepends this access code to
any number that includes an area code that is
not the local area code.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony
Info.System Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system. To
use this number with numeric pagers, enter an
asterisk after the last digit of the phone number.

Datatype: String

Maximum Length: 75 characters

Required: No

Default Site.Telephony Info.Direct
Access Phone Number

Area code and phone number of the DID line
you set up for specially licensed user access to
the Vocera system. If you have not obtained
Vocera Access Anywhere user licenses or you
are not using ISDN or SIP signaling protocol, this
property should not be updated.

Datatype: String

Maximum Length: 75 characters

Required: No

Since: 4.1

Default Site.Telephony Info.Voice
Mail Access

Sequence of numbers you enter to access the
company's voice mail system.

A typical entry includes X, then the sequence
of digits that you dial to get into the voicemail
system from an internal phone, and possibly
special dialing characters such as the * or # to
indicate the end of the sequence.

Datatype: String

Maximum Length: 20 characters

Required: No

System Properties

Property Reference ··· 159

Key Description

Default Site.Telephony Info.Seven
Digit Dialing

If true, the area code is omitted from the
dialing sequence for a local call.

Datatype: boolean

Required: No

Default Site.Telephony Info.PIN
Setup

Template for adding a PIN to a dialing sequence
for long distance calls. A PIN template can
include digits, special characters, and PIN
macros.

Datatype: String

Maximum Length: 75 characters

Required: No

Default Site.Telephony
Info.Default PIN

The default PIN for long distance calls.

If a telephony PIN is not specified in the user's
profile and the user does not belong to a
department group that has a PIN, then the site
PIN is used.

Datatype: String

Maximum Length: 75 characters

Required: No

Default Site.Telephony
Info.Telephony Extension Length

Specify the number of digits in an extension, or
0 (zero) to allow variable length extensions.

Datatype: int

Required: No

Default Site.Telephony Info.Access
Code Info

By default, numbers in the local area code use
the Default Local Access Code and all others use
the Default Long-Distance Access Code. This
property set contains telephone numbers that
are exceptions to the access code policy. Each
member of the indexed set is itself a property
set.

Datatype: IndexedPropertySet

Required: No

Default Site.Telephony Info.Access
Code Info.*

Represents each defined access code exception
in the property set.

Datatype: KeyedPropertySet

Required: No

 System Properties

160 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony Info.Access
Code Info.*.Number Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.Area
Code

Area code for which the exception is defined.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony
Info.Access Code Info.*.Number
Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.Starts
With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Default Site.Telephony Info.Access
Code Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Default Site.Telephony Info.Access
Code Info.*.Access Code

Access code that the specified area code
requires.

Datatype: String

Maximum Length: 10 characters

Required: Yes (for each access code exception)

System Properties

Property Reference ··· 161

Key Description

Default Site.Telephony Info.Toll
Info

By default, numbers in the local area code are
considered toll-free, and others are considered
to require toll-call permissions. This property set
contains telephone numbers that are exceptions
to the toll-call policy.

Datatype: IndexedPropertySet

Required: No

Default Site.Telephony Info.Toll
Info.*

Represents each defined toll info exception.
Each keyed set specifies an area code and
phone numbers that can be called even by users
who do not have toll-call permissions granted.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range

Property set that defines the number range for a
toll info exception.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.Area Code

Area code for which the exception is defined.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony Info.Toll
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

 System Properties

162 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony Info.Toll
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Default Site.Telephony Info.Toll
Info.*.Toll Free

If true, the area code is toll free.

Datatype: boolean

Required: No

Default Site.Telephony
Info.Paging Info

Specifies properties for interacting with pagers.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony
Info.Paging Info.Pager Number
Length

Specify the number of digits in a pager number,
or 0 (zero) to allow variable length numbers.

Datatype: int

Required: No

Default Site.Telephony
Info.Paging Info.Outside Page
Setup

Template that determines how Vocera formats
the string passed to a pager outside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String

Required: No

Default Site.Telephony
Info.Paging Info.Inside Page Setup

Template that determines how Vocera formats
the string passed to a pager inside the Vocera
system. The default value of this property is
%N;%V%D. For more information, see the
Vocera Telephony Configuration Guide.

Datatype: String

Required: No

System Properties

Property Reference ··· 163

Key Description

Default Site.Telephony
Info.Paging Info.Outside Page
Setup for DialIn

Template that determines how Vocera formats
the string passed to an outside pager by a
person calling into the Vocera hunt group or
DID number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String

Required: No

Default Site.Telephony
Info.Paging Info.Inside Page Setup
for DialIn

Template that determines how Vocera formats
the string passed to an inside pager by a person
calling into the Vocera hunt group or DID
number. The default value of this property is
%N;%X. For more information, see the Vocera
Telephony Configuration Guide.

Datatype: String

Required: No

Default Site.Telephony Info.DID
Info

Property set containing direct inward dialing
(DID) information.

Datatype: IndexedPropertySet

Required: No

Default Site.Telephony Info.DID
Info.*

Represents each defined range of direct inward
dialing (DID) numbers. Each keyed set specifies
a prefix and the range of phone numbers to use
for direct inward dialing.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony Info.DID
Info.*.Number Range

Property set that defines a number range to use
for direct inward dialing.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.Match Type

Type of number range to match. Enter one of
the following values: All, Starts With, or
Range.

Datatype: String

Required: No

 System Properties

164 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony Info.DID
Info.*.Number Range.Starts With

Sequence of characters to match. Used when
Match Type = Starts With.

Datatype: String

Maximum Length: 10 characters

Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.From

Start of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Default Site.Telephony Info.DID
Info.*.Number Range.To

End of range to match. Used when Match Type
= Range.

Datatype: String

Maximum Length: 20 characters

Required: No

Default Site.Telephony Info.DID
Info.*.Prefix

Area code and prefix assigned to the range. For
example, if the local area code of the PBX is
408, and the corporate prefix for all extensions
is 790, you typically enter (408)-790. In
some situations, your PBX administrator may
assign a different prefix for you to use.

Datatype: String

Maximum Length: 50 characters

Required: Yes

Default Site.Telephony
Info.Dynamic Phone Info

Property set that specifies a range of dynamic
phone extensions. This allows you to configure
Vocera to supply telephone extensions on
demand to users who need them.

Datatype: KeyedPropertySet

Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Enabled

If true, dynamic extensions are enabled.

Datatype: boolean

Required: No

System Properties

Property Reference ··· 165

Key Description

Default Site.Telephony
Info.Dynamic Phone Info.First

Specifies the first dynamic extension in the
range.

Datatype: String

Maximum Length: 7 characters

Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Last

Specifies the last dynamic extension in the
range. The Last value must be greater than the
First value.

Datatype: String

Maximum Length: 7 characters

Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Lifetime

Specifies the lifetime, in days or hours, of the
assignment of dynamic extensions. Enter 0
(zero) to make the extensions permanent.

Datatype: int

Required: No

Default Site.Telephony
Info.Dynamic Phone Info.Hours

Specifies whether the lifetime of dynamic
extensions is measured in hours (true) or days
(false).

Datatype: boolean

Required: No

Since: 4.1

Default Site.Telephony
Info.Dynamic Phone Info.Last
Allocated

The last allocated dynamic extension. Cannot
be updated.

Datatype: String

Default Site.Telephony
Info.Shared Server Info

Property set that contains information needed
to allow multiple sites to share a Telephony
server.

Datatype: IndexedPropertySet

Required: No

Default Site.Telephony
Info.Shared Server Info.*

Represents each defined site that shares this
Telephony server. Each keyed set specifies the
site, hunt group number, reserved range of lines
for incoming calls, and the tie line prefix.

Datatype: KeyedPropertySet

Required: No

 System Properties

166 ··· Vocera Administration Interface Guide

Key Description

Default Site.Telephony
Info.Shared Server Info.*.Site

Principal site for which Telephony is enabled.

Datatype: Site object

Default Site.Telephony
Info.Shared Server Info.*.System
Phone Number

Area code and phone number of the DID line or
hunt group you set up for the Vocera system.

Datatype: String

Default Site.Telephony
Info.Shared Server Info.*.First
Reserved Line No

First of the reserved lines for incoming calls.

Datatype: String

Default Site.Telephony
Info.Shared Server Info.*.Reserved
Line Count

Number of reserved lines for incoming calls.

Datatype: int

Default Site.Telephony
Info.Shared Server
Info.*.Extension Prefix

Prefix of the dial string used to place calls
through the tie line to the selected site that
is sharing the principal's telephony server.
Alternatively, this field could also be used to
specify a prefix for Direct Inward Dialing (DID)
numbers at the selected site.

Datatype: String

Since: 4.1

Default Site.Telephony Info.Call
Signaling Address

The IP address of your IP PBX or VoIP gateway.
By default, port 5060 is used. If you need to
change the port, enter the call signaling address
in the form IP_Address:Port.

Datatype: String

Maximum Length: 75 characters

Since: 4.3

Default Site.Telephony Info.Cisco
Info

Property set containing default Cisco integration
properties.

Datatype: KeyedPropertySet

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.Enabled

Datatype: boolen

Required: No

Since: 4.3

System Properties

Property Reference ··· 167

Key Description

Default Site.Telephony Info.Cisco
Info.Extension Mobility Enabled

Datatype: boolean

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.Phone

The voice access number for CUCM. This
number should match the route pattern/number
for the Vocera SIP trunk. You can find route
patterns in CUCM Console by choosing Call
Routing > Route/Hunt > Route Pattern.

Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.First Line

The first phone line used for the internal range
of Vocera lines.

Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.Last Line

The last phone line used for the internal range
of Vocera lines.

Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.IP Address

The IP address of the CUCM in dotted-decimal
notation (for example, 192.168.15.10).

Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.User Name

The Vocera application user ID for CUCM.

Datatype: String

Required: No

Since: 4.3

Default Site.Telephony Info.Cisco
Info.Password

The Vocera application user ID for CUCM.

Datatype: String

Required: No

Since: 4.3

 System Properties

168 ··· Vocera Administration Interface Guide

Index ··· 169

 Index

A
Address class, 26
Address properties, 82
administrators, tiered, 76
AntiPermissions, 38
authenticating VAI applications, 77

B
backup method, 65
badge status, 46
BadgeStatus class, 46
Buddies property, 28
buddy, 27

adding to list, 29
inside, 28
outside, 28

C
certificates

creating, 75
VAI methods, 73

checkADAdminCredentials method, 78
checkAdminCredentials method, 78
checkADUserCredentials method, 79
checkAppCredentials method, 79
checkUserCredentials method, 78
class hierarchy, 15
compiler, 17
connecting to server, 59
contact

creating, 28
Contact class, 28
Contact properties, 84

170 ··· Vocera Administration Interface Guide

controlling the server, 64
create method, 22
credentials, checking, 77

D
data

importing, 47
delete method, 24
deploying applications, 17
Device class, 30
Device properties, 85

E
emptyDatabase method, 65
entity

creating, 21
definition, 21
deleting, 24
internal name, 25
queries, 22
updating, 23

error codes, 61
errors, 71
exceptions, 71

G
getBackupFileNames method, 66
getBadgeStatus method, 46
getLicenseInfo method, 62
getMembers method, 36
getMessage method, 71
getProperties method, 52
getPropertyKeys method, 51
getResultCode method, 71
getServerStateString method, 62
getSystemProperties method, 62
Group class, 35
Group permissions, 38
Group properties, 87

H
handleReportStatus method, 60
handleServerStateChange method, 60
hardware requirements, 14
Hungarian notation, 14

Index ··· 171

I
importing data

from external database, 47
inside buddy, 28

adding to list, 29
internal name, 25

J
Javadocs, 14
JDK version, 17

L
libraries

Vocera, 14
license key, 15
Location class, 40
Location properties, 106
login credentials, 77

M
makeAppCertificateFile method, 74
makeCertificateFile method, 73
makeCertificateString method, 73
mc.bat, 75
messages, text, 50
moveEntitiesToSite method, 42
multiuser applications, 77
myVai, 14

O
open method, 59, 59, 60
openWithADLogin method, 61
openWithAppCertificateFile method, 74
openWithCertificateFile method, 74
openWithCertificateString method, 74
outside buddy, 28

creating, 28

P
Permissions, 38
persisting application data, 55
properties

Address, 82
Contact, 84
Device, 85

172 ··· Vocera Administration Interface Guide

Group, 87
Location, 106
Site, 108
system, 134
User, 123

R
reading application data, 55
restartServer method, 64

S
sample applications, 18
sending messages, 50
server

opening a connection, 59
states, 69
stopping and starting, 64

server properties
getting, 62
setting, 63

servlet, 78
Site class, 42
site properties, 43
Site properties, 108
software requirements, 14
startServer method, 64
stopServer method, 64
subgroups, 35
system properties

getting, 62
setting, 63

system requirements, 14

T
telephony properties, 43
text messages, 50
things VAI cannot do

load data from a CSV file, 14
tiered administration, 76

U
updateSystemProperties method, 63
User class, 44
User properties, 123
users

badge status, 46

Index ··· 173

group membership, 45
identifying, 44
sending messages, 50

V
VAI, 13

limitations, 14
VAI application IP addresses, 77
VAI properties, 134
VAI reference, 14
VAI-enabled license key, 15
version mismatch error, 18
VOCERA_LICENSE, 15

W
Web applications, 77
writing application data, 55

174 ··· Vocera Administration Interface Guide

	Vocera Administration Interface Guide
	Contents
	List of Figures
	List of Tables
	List of Examples

	Overview
	VAI Features
	VAI Limitations
	About VAI Documentation
	System Requirements
	Getting Started With VAI
	VAI Class Hierarchy
	Developing VAI Applications
	Using the Sample Applications
	Avoiding Version Mismatch Problems
	VAI Example

	Working With Entities
	Entity Operations
	Creating Entities
	Querying Entities
	Updating Entities
	Deleting Entities

	Using Internal Names
	Working with Addresses
	Working with Buddies and Contacts
	Working with Devices
	Creating a Device
	Updating a Device
	Getting Devices
	Getting the Color or Type of a Device
	Modifying Device Status Choices
	Uploading Badge Logs

	Working with Groups
	Getting Subgroups
	Managing Group Membership
	Managing Group Permissions

	Working with Locations
	Working with Sites
	Working with Users
	Identifying Users
	Users and Group Membership
	Badge Users and Badge Status
	Importing User Data
	Sending a Text Message

	Working With Properties
	Using Keyed Property Sets
	Using Indexed Property Sets
	Persisting Application Data

	Managing the Vocera Server
	Connecting to the Vocera Server
	Using the VAI.open() Method
	Result Codes for the open() Method

	Getting Vocera Server Properties
	Setting Vocera Server Properties
	Controlling the Vocera Server
	Managing the Vocera Database
	Monitoring the Vocera Server
	Vocera Server States

	Error Handling
	Using the VAIException Class

	Security Features
	Controlling Access
	Using the mc.bat Utility
	VAI and Tiered Administrators

	Encrypted Passwords
	Authenticating VAI Applications
	Best Practices for Multiuser Applications

	Property Reference
	Address Properties
	Contact Properties
	Device Properties
	Group Properties
	Location Properties
	Site Properties
	User Properties
	System Properties

	Index

